SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mentzer A) "

Sökning: WFRF:(Mentzer A)

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Niemi, MEK, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
2.
  • Romagnoni, A, et al. (författare)
  • Comparative performances of machine learning methods for classifying Crohn Disease patients using genome-wide genotyping data
  • 2019
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9:1, s. 10351-
  • Tidskriftsartikel (refereegranskat)abstract
    • Crohn Disease (CD) is a complex genetic disorder for which more than 140 genes have been identified using genome wide association studies (GWAS). However, the genetic architecture of the trait remains largely unknown. The recent development of machine learning (ML) approaches incited us to apply them to classify healthy and diseased people according to their genomic information. The Immunochip dataset containing 18,227 CD patients and 34,050 healthy controls enrolled and genotyped by the international Inflammatory Bowel Disease genetic consortium (IIBDGC) has been re-analyzed using a set of ML methods: penalized logistic regression (LR), gradient boosted trees (GBT) and artificial neural networks (NN). The main score used to compare the methods was the Area Under the ROC Curve (AUC) statistics. The impact of quality control (QC), imputing and coding methods on LR results showed that QC methods and imputation of missing genotypes may artificially increase the scores. At the opposite, neither the patient/control ratio nor marker preselection or coding strategies significantly affected the results. LR methods, including Lasso, Ridge and ElasticNet provided similar results with a maximum AUC of 0.80. GBT methods like XGBoost, LightGBM and CatBoost, together with dense NN with one or more hidden layers, provided similar AUC values, suggesting limited epistatic effects in the genetic architecture of the trait. ML methods detected near all the genetic variants previously identified by GWAS among the best predictors plus additional predictors with lower effects. The robustness and complementarity of the different methods are also studied. Compared to LR, non-linear models such as GBT or NN may provide robust complementary approaches to identify and classify genetic markers.
  •  
3.
  • Craddock, Nick, et al. (författare)
  • Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls
  • 2010
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 464:7289, s. 713-720
  • Tidskriftsartikel (refereegranskat)abstract
    • Copy number variants (CNVs) account for a major proportion of human genetic polymorphism and have been predicted to have an important role in genetic susceptibility to common disease. To address this we undertook a large, direct genome-wide study of association between CNVs and eight common human diseases. Using a purpose-designed array we typed,19,000 individuals into distinct copy-number classes at 3,432 polymorphic CNVs, including an estimated similar to 50% of all common CNVs larger than 500 base pairs. We identified several biological artefacts that lead to false-positive associations, including systematic CNV differences between DNAs derived from blood and cell lines. Association testing and follow-up replication analyses confirmed three loci where CNVs were associated with disease-IRGM for Crohn's disease, HLA for Crohn's disease, rheumatoid arthritis and type 1 diabetes, and TSPAN8 for type 2 diabetes-although in each case the locus had previously been identified in single nucleotide polymorphism (SNP)-based studies, reflecting our observation that most common CNVs that are well-typed on our array are well tagged by SNPs and so have been indirectly explored through SNP studies. We conclude that common CNVs that can be typed on existing platforms are unlikely to contribute greatly to the genetic basis of common human diseases.
  •  
4.
  • Chakraborty, S., et al. (författare)
  • Phenotypic and genomic analyses of bacteriophages targeting environmental and clinical CS3-expressing enterotoxigenic Escherichia coli (ETEC) strains
  • 2018
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 13:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Diarrhea due to infection of enterotoxigenic Escherichia coli (ETEC) is of great concern in several low and middle-income countries. ETEC infection is considered to be the most common cause of diarrhea in Bangladesh and is mainly spread through contaminated water and food. ETEC pathogenesis is mediated by the expression of enterotoxins and colonization factors (CFs) that target the intestinal mucosa. ETEC can survive for extended time periods in water, where they are likely to be attacked by bacteriophages. Antibiotic resistance is common amongst enteric pathogens and therefore is the use of bacteriophages (phage) as a therapeutic tool an interesting approach. This study was designed to identify novel phages that specifically target ETEC virulence factors. In total, 48 phages and 195 ETEC isolates were collected from water sources and stool samples. Amongst the identified ETEC specific phages, an enterobacteria phage T7, designated as IMM-002, showed a significant specificity towards colonization factor CS3-expressing ETEC isolates. Antibody-blocking and phage-neutralization assays revealed that CS3 is used as a host receptor for the IMM-002 phage. The bacterial CRISPR-Cas (Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR-associated) defence mechanism can invoke immunity against phages. Genomic analyses coupled with plaque assay experiments indicate that the ETEC CRISPR-Cas system is involved in the resistance against the CS3-specific phage (IMM-002) and the previously identified CS7-specific phage (IMM-001). As environmental water serves as a reservoir for ETEC, it is important to search for new antimicrobial agents such as phages in environmental water as well as the human gut. A better understanding of how the interplay between ETEC-specific phages and ETEC isolates affects the ETEC diversity, both in environmental ecosystems and within the host, is important for the development of new treatments for ETEC infections.
  •  
5.
  •  
6.
  • von Mentzer, Astrid, 1983, et al. (författare)
  • Long-read-sequenced reference genomes of the seven major lineages of enterotoxigenic Escherichia coli (ETEC) circulating in modern time
  • 2021
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Enterotoxigenic Escherichia coli (ETEC) is an enteric pathogen responsible for the majority of diarrheal cases worldwide. ETEC infections are estimated to cause 80,000 deaths annually, with the highest rates of burden, ca 75 million cases per year, amongst children under 5 years of age in resource-poor countries. It is also the leading cause of diarrhoea in travellers. Previous large-scale sequencing studies have found seven major ETEC lineages currently in circulation worldwide. We used PacBio long-read sequencing combined with Illumina sequencing to create high-quality complete reference genomes for each of the major lineages with manually curated chromosomes and plasmids. We confirm that the major ETEC lineages all harbour conserved plasmids that have been associated with their respective background genomes for decades, suggesting that the plasmids and chromosomes of ETEC are both crucial for ETEC virulence and success as pathogens. The in-depth analysis of gene content, synteny and correct annotations of plasmids will elucidate other plasmids with and without virulence factors in related bacterial species. These reference genomes allow for fast and accurate comparison between different ETEC strains, and these data will form the foundation of ETEC genomics research for years to come.
  •  
7.
  •  
8.
  •  
9.
  • von Mentzer, Astrid, 1983, et al. (författare)
  • Identification of enterotoxigenic Escherichia coli (ETEC) clades with long-term global distribution
  • 2014
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 46:12, s. 1321-1326
  • Tidskriftsartikel (refereegranskat)abstract
    • Enterotoxigenic Escherichia coil (ETEC), a major cause of infectious diarrhea, produce heat-stable and/or heat-labile enterotoxins and at least 25 different colonization factors that target the intestinal mucosa. The genes encoding the enterotoxins and most of the colonization factors are located on plasmids found across diverse E. coli serogroups. Whole-genome sequencing of a representative collection of ETEC isolated between 1980 and 2011 identified globally distributed lineages characterized by distinct colonization factor and enterotoxin profiles. Contrary to current notions, these relatively recently emerged lineages might harbor chromosome and plasmid combinations that optimize fitness and transmissibility. These data have implications for understanding, tracking and possibly preventing ETEC disease.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy