SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mironowicz Piotr) "

Sökning: WFRF:(Mironowicz Piotr)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Banacki, Michał, et al. (författare)
  • Hybrid no-signaling-quantum correlations
  • 2022
  • Ingår i: New Journal of Physics. - : IOP Publishing. - 1367-2630. ; 24:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Fundamental investigations in non-locality have shown that while the no-signaling principle alone is not sufficient to single out the set of quantum non-local correlations, local quantum mechanics and no-signaling together exactly reproduce the set of quantum correlations in the two-party Bell scenario. Here, we introduce and study an intermediate hybrid no-signaling quantum set of non-local correlations that we term HNSQ in the multi-party Bell scenario where some subsystems are locally quantum while the remaining subsystems are only constrained by the no-signaling principle. Specifically, the set HNSQ is a super-quantum set of correlations derived from no-signaling assemblages by performing quantum measurements on the trusted subsystems. We show that in contrast to the set NS of no-signaling behaviors, there exist extreme points of HNSQ in the tripartite Bell scenario that admit quantum realization. As a tool for optimization over the set HNSQ, we introduce an outer hierarchy of semi-definite programming approximations to the set following an approach put forward by Doherty–Parrilo–Spedalieri. We perform an extensive numerical analysis of the maximal violation of the facet Bell inequalities in the three-party binary input–output scenario and study the corresponding self-testing properties. In contrast to the usual no-signaling correlations, the new set allows for simple security proofs of (one-sided)-device-independent applications against super-quantum adversaries.
  •  
2.
  • Hameedi, Alley, et al. (författare)
  • Complementarity between entanglement-assisted and quantum distributed random access code
  • 2017
  • Ingår i: Physical Review A: covering atomic, molecular, and optical physics and quantum information. - 2469-9926 .- 2469-9934. ; 95:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Collaborative communication tasks such as random access codes (RACs) employing quantum resources have manifested great potential in enhancing information processing capabilities beyond the classical limitations. The two quantum variants of RACs, namely, quantum random access code (QRAC) and the entanglement-assisted random access code (EARAC), have demonstrated equal prowess for a number of tasks. However, there do exist specific cases where one outperforms the other. In this article, we study a family of 3 -> 1 distributed RACs [J. Bowles, N. Brunner, and M. Pawlowski, Phys. Rev. A 92, 022351 (2015)] and present its general construction of both the QRAC and the EARAC. We demonstrate that, depending on the function of inputs that is sought, if QRAC achieves the maximal success probability then EARAC fails to do so and vice versa. Moreover, a tripartite Bell-type inequality associated with the EARAC variants reveals the genuine multipartite nonlocality exhibited by our protocol. We conclude with an experimental realization of the 3 -> 1 distributed QRAC that achieves higher success probabilities than the maximum possible with EARACs for a number of tasks.
  •  
3.
  • Hameedi, Alley, 1984-, et al. (författare)
  • Distributed random access code with quantum resources
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Collaborative communication tasks as random access codes (RACs) employing quantum resources have manifested great potential in enhancing information processing capabilities beyond the classical limitations. The two quantum variants of RACs, namely quantum random access code (QRAC) and the entanglement assisted random access code (EARAC), have demonstrated equal prowess for a number of tasks. However, there do exist specific cases where one outperforms the other. In this letter, we study a family of 3 to 1 distributed RACs, which are the simplest communication network of that type. We present its construction of both the QRAC and the EARAC. We demonstrate that, depending on the task, if QRAC achieves the maximal success probability then the EARAC fails to do so and vice versa. Moreover, a tripartite Bell-type inequality associated with the EARAC variants reveals the genuine multipartite nonlocality exhibited by our protocol. We conclude with an experimental realization of the 3 to 1 distributed QRAC that achieves higher success probabilities than the maximum possible with EARACs for a number of tasks.
  •  
4.
  • Hameedi, Alley, et al. (författare)
  • Experimental test of nonclassicality with arbitrarily low detection efficiency
  • 2020
  • Ingår i: Physical Review A: covering atomic, molecular, and optical physics and quantum information. - 2469-9926 .- 2469-9934. ; 102:3
  • Tidskriftsartikel (refereegranskat)abstract
    • We theoretically introduce and experimentally demonstrate the realization of a nonclassicality test that allows for arbitrarily low detection efficiency without invoking an extra assumption of independence of the devices. Our test and its implementation is set in a prepare-and-measure scenario with an upper limit on the classical communication capacity of the channel through which the systems are communicated. The essence for our test is the use of two preparation and two measurement devices, which are randomly paired in each round. Our work opens the possibility for experimental realizations of nonclassicality tests with off-the-shelf technology.
  •  
5.
  • Hameedi, Alley, 1984-, et al. (författare)
  • Experimental test of nonclassicality with arbitrary low detection efficiency
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • We theoretically introduce and experimentally demonstrate the realization of a nonclassicality test that allows for arbitrarily low detection efficiency without invoking any extra assumptions as independence of the devices. Our test and its implementation is set in a prepare-and-measure scenario with an upper limit on the communication capacity of the channel through which the systems are communicated. The essence for our novel test is the use of two preparation and two measurement devices, which are randomly paired in each round. Our work opens up the possibility of experimental realizations of device independent protocols with current off-the-shelf technology.
  •  
6.
  • Mironowicz, Piotr, 1986- (författare)
  • Entangled rendezvous : a possible application of Bell non-locality for mobile agents on networks
  • 2023
  • Ingår i: New Journal of Physics. - : IOP Publishing. - 1367-2630. ; 25:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Rendezvous is an old problem of assuring that two or more parties, initially separated, not knowing the position of each other, and not allowed to communicate, are striving to meet without pre-agreement on the meeting point. This problem has been extensively studied in classical computer science and has vivid importance to modern and future applications. Quantum non-locality, like Bell inequality violation, has shown that in many cases quantum entanglement allows for improved coordination of two, or more, separated parties compared to classical sources. The non-signaling correlations in many cases even strengthened such phenomena. In this work, we analyze, how Bell non-locality can be used by asymmetric location-aware agents trying to rendezvous on a finite network with a limited number of steps. We provide the optimal solution to this problem for both agents using quantum resources, and agents with only 'classical' computing power. Our results show that for cubic graphs and cycles it is possible to gain an advantage by allowing the agents to use the assistance of entangled quantum states.
  •  
7.
  • Mironowicz, Piotr, et al. (författare)
  • Increased certification of semi-device independent random numbers using many inputs and more post-processing
  • 2016
  • Ingår i: New Journal of Physics. - : IOP Publishing. - 1367-2630. ; 18
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantum communication with systems of dimension larger than two provides advantages in information processing tasks. Examples include higher rates of key distribution and random number generation. The main disadvantage of using such multi-dimensional quantum systems is the increased complexity of the experimental setup. Here, we analyze a not-so-obvious problem: the relation between randomness certification and computational requirements of the post-processing of experimental data. In particular, we consider semi-device independent randomness certification from an experiment using a four dimensional quantum system to violate the classical bound of a random access code. Using state-of-the-art techniques, a smaller quantum violation requires more computational power to demonstrate randomness, which at some point becomes impossible with today's computers although the randomness is (probably) still there. We show that by dedicating more input settings of the experiment to randomness certification, then by more computational postprocessing of the experimental data which corresponds to a quantum violation, one may increase the amount of certified randomness. Furthermore, we introduce a method that significantly lowers the computational complexity of randomness certification. Our results show how more randomness can be generated without altering the hardware and indicate a path for future semi-device independent protocols to follow.
  •  
8.
  • Mironowicz, Piotr, et al. (författare)
  • Quantum randomness protected against detection loophole attacks
  • 2021
  • Ingår i: Quantum Information Processing. - : SPRINGER. - 1570-0755 .- 1573-1332. ; 20:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Device and semi-device-independent private quantum randomness generators are crucial for applications requiring private randomness. However, they are vulnerable to detection inefficiency attacks and this limits severely their usage for practical purposes. Here, we present a method for protecting semi-device-independent private quantum randomness generators in prepare-and-measure scenarios against detection inefficiency attacks. The key idea is the introduction of a blocking device that adds failures in the communication between the preparation and measurement devices. We prove that, for any detection efficiency, there is a blocking rate that provides protection against these attacks. We experimentally demonstrate the generation of private randomness using weak coherent states and standard avalanche photo-detectors.
  •  
9.
  • Ramanathan, Ravishankar, et al. (författare)
  • Steering is an essential feature of non-locality in quantum theory
  • 2018
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • A physical theory is called non-local when observers can produce instantaneous effects over distant systems. Non-local theories rely on two fundamental effects: local uncertainty relations and steering of physical states at a distance. In quantum mechanics, the former one dominates the other in a well-known class of non-local games known as XOR games. In particular, optimal quantum strategies for XOR games are completely determined by the uncertainty principle alone. This breakthrough result has yielded the fundamental open question whether optimal quantum strategies are always restricted by local uncertainty principles, with entanglement-based steering playing no role. In this work, we provide a negative answer to the question, showing that both steering and uncertainty relations play a fundamental role in determining optimal quantum strategies for non-local games. Our theoretical findings are supported by an experimental implementation with entangled photons.
  •  
10.
  • Seguinard, Alban Jean-Marie, et al. (författare)
  • Experimental certification of more than one bit of quantum randomness in the two inputs and two outputs scenario
  • 2023
  • Ingår i: New Journal of Physics. - 1367-2630. ; 25:11
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the striking properties of quantum mechanics is the occurrence of the Bell-type non-locality. They are a fundamental feature of the theory that allows two parties that share an entangled quantum system to observe correlations stronger than possible in classical physics. In addition to their theoretical significance, non-local correlations have practical applications, such as device-independent randomness generation, providing private unpredictable numbers even when they are obtained using devices delivered by an untrusted vendor. Thus, determining the quantity of certifiable randomness that can be produced using a specific set of non-local correlations is of significant interest. In this paper, we present an experimental realization of recent Bell-type operators designed to provide private random numbers that are secure against adversaries with quantum resources. We use semi-definite programming to provide lower bounds on the generated randomness in terms of both min-entropy and von Neumann entropy in a device-independent scenario. We compare experimental setups providing Bell violations close to the Tsirelson's bound with lower rates of events, with setups having slightly worse levels of violation but higher event rates. Our results demonstrate the first experiment that certifies close to two bits of randomness from binary measurements of two parties. Apart from single-round certification, we provide an analysis of finite-key protocol for quantum randomness expansion using the Entropy Accumulation theorem and show its advantages compared to existing solutions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy