SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Moutou C.) "

Sökning: WFRF:(Moutou C.)

  • Resultat 1-10 av 23
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chauvin, G., et al. (författare)
  • Discovery of a warm, dusty giant planet around HIP 65426
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 605
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. The SHINE program is a high-contrast near-infrared survey of 600 young, nearby stars aimed at searching for and characterizing new planetary systems using VLT/SPHERE's unprecedented high-contrast and high-angular-resolution imaging capabilities. It is also intended to place statistical constraints on the rate, mass and orbital distributions of the giant planet population at large orbits as a function of the stellar host mass and age to test planet-formation theories.Methods. We used the IRDIS dual-band imager and the IFS integral field spectrograph of SPHERE to acquire high-contrast coronagraphic differential near-infrared images and spectra of the young A2 star HIP 65426. It is a member of the similar to 17 Myr old Lower Centaurus-Crux association. Results. At a separation of 830 mas (92 au projected) from the star, we detect a faint red companion. Multi-epoch observations confirm that it shares common proper motion with HIP 65426. Spectro-photometric measurements extracted with IFS and IRDIS between 0.95 and 2.2 mu m indicate a warm, dusty atmosphere characteristic of young low-surface-gravity L5-L7 dwarfs. Hot-start evolutionary models predict a luminosity consistent with a 6-12 M-Jup, T-eff = 1300-1600K and R = 1.5 +/- 0.1 R-Jup giant planet. Finally, the comparison with Exo-REM and PHOENIX BT-Settl synthetic atmosphere models gives consistent effective temperatures but with slightly higher surface gravity solutions of log(g) = 4.0-5.0 with smaller radii (1.0-1.3 R-Jup).Conclusions. Given its physical and spectral properties, HIP 65426 b occupies a rather unique placement in terms of age, mass, and spectral-type among the currently known imaged planets. It represents a particularly interesting case to study the presence of clouds as a function of particle size, composition, and location in the atmosphere, to search for signatures of non-equilibrium chemistry, and finally to test the theory of planet formation and evolution.
  •  
2.
  • Osborn, H. P., et al. (författare)
  • Two warm Neptunes transiting HIP 9618 revealed by TESS and Cheops
  • 2023
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 523:2, s. 3069-3089
  • Tidskriftsartikel (refereegranskat)abstract
    • HIP 9618 (HD 12572, TOI-1471, TIC 306263608) is a bright (G = 9.0 mag) solar analogue. TESS photometry revealed the star to have two candidate planets with radii of 3.9 ± 0.044 R (HIP 9618 b) and 3.343 ± 0.039 R (HIP 9618 c). While the 20.77291 d period of HIP 9618 b was measured unambiguously, HIP 9618 c showed only two transits separated by a 680-d gap in the time series, leaving many possibilities for the period. To solve this issue, CHEOPS performed targeted photometry of period aliases to attempt to recover the true period of planet c, and successfully determined the true period to be 52.56349 d. High-resolution spectroscopy with HARPS-N, SOPHIE, and CAFE revealed a mass of 10.0 ± 3.1M for HIP 9618 b, which, according to our interior structure models, corresponds to a 6.8 ± 1.4 per cent gas fraction. HIP 9618 c appears to have a lower mass than HIP 9618 b, with a 3-sigma upper limit of <18M. Follow-up and archival RV measurements also reveal a clear long-term trend which, when combined with imaging and astrometric information, reveal a low-mass companion (0.08+−000512M☉) orbiting at 26.0+−111900 au. This detection makes HIP 9618 one of only five bright (K < 8 mag) transiting multiplanet systems known to host a planet with P > 50 d, opening the door for the atmospheric characterization of warm (Teq < 750 K) sub-Neptunes.
  •  
3.
  • Vigan, A., et al. (författare)
  • The SPHERE infrared survey for exoplanets (SHINE) : III. The demographics of young giant exoplanets below 300 au with SPHERE
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 651
  • Tidskriftsartikel (refereegranskat)abstract
    • The SpHere INfrared Exoplanet (SHINE) project is a 500-star survey performed with SPHERE on the Very Large Telescope for the purpose of directly detecting new substellar companions and understanding their formation and early evolution. Here we present an initial statistical analysis for a subsample of 150 stars spanning spectral types from B to M that are representative of the full SHINE sample. Our goal is to constrain the frequency of substellar companions with masses between 1 and 75 MJup and semimajor axes between 5 and 300 au. For this purpose, we adopt detection limits as a function of angular separation from the survey data for all stars converted into mass and projected orbital separation using the BEX-COND-hot evolutionary tracks and known distance to each system. Based on the results obtained for each star and on the 13 detections in the sample, we use a Markov chain Monte Carlo tool to compare our observations to two different types of models. The first is a parametric model based on observational constraints, and the second type are numerical models that combine advanced core accretion and gravitational instability planet population synthesis. Using the parametric model, we show that the frequencies of systems with at least one substellar companion are 23.0−9.7+13.5, 5.8−2.8+4.7, and 12.6−7.1+12.9% for BA, FGK, and M stars, respectively. We also demonstrate that a planet-like formation pathway probably dominates the mass range from 1–75 MJup for companions around BA stars, while for M dwarfs, brown dwarf binaries dominate detections. In contrast, a combination of binary star-like and planet-like formation is required to best fit the observations for FGK stars. Using our population model and restricting our sample to FGK stars, we derive a frequency of 5.7−2.8+3.8%, consistent with predictions from the parametric model. More generally, the frequency values that we derive are in excellent agreement with values obtained in previous studies.
  •  
4.
  • Lagrange, A. -M., et al. (författare)
  • Post-conjunction detection of beta Pictoris b with VLT/SPHERE
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 621
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. With an orbital distance comparable to that of Saturn in the solar system, beta Pictoris b is the closest (semi-major axis similar or equal to 9 au) exoplanet that has been imaged to orbit a star. Thus it offers unique opportunities for detailed studies of its orbital, physical, and atmospheric properties, and of disk-planet interactions. With the exception of the discovery observations in 2003 with NaCo at the Very Large Telescope (VLT), all following astrometric measurements relative to beta Pictoris have been obtained in the southwestern part of the orbit, which severely limits the determination of the planet's orbital parameters.Aims. We aimed at further constraining beta Pictoris b orbital properties using more data, and, in particular, data taken in the northeastern part of the orbit.Methods. We used SPHERE at the VLT to precisely monitor the orbital motion of beta beta Pictoris b since first light of the instrument in 2014.Results. We were able to monitor the planet until November 2016, when its angular separation became too small (125 mas, i.e., 1.6 au) and prevented further detection. We redetected beta Pictoris b on the northeast side of the disk at a separation of 139 mas and a PA of 30 degrees in September 2018. The planetary orbit is now well constrained. With a semi-major axis (sma) of a = 9.0 +/- 0.5 au (1 sigma), it definitely excludes previously reported possible long orbital periods, and excludes beta Pictoris b as the origin of photometric variations that took place in 1981. We also refine the eccentricity and inclination of the planet. From an instrumental point of view, these data demonstrate that it is possible to detect, if they exist, young massive Jupiters that orbit at less than 2 au from a star that is 20 pc away.
  •  
5.
  • Bonavita, M., et al. (författare)
  • New binaries from the SHINE survey
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 663
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the multiple stellar systems observed within the SpHere INfrared survey for Exoplanet (SHINE). SHINE searched for sub-stellar companions to young stars using high contrast imaging. Although stars with known stellar companions within the SPHERE field of view (< 5.5 arcsec) were removed from the original target list, we detected additional stellar companions to 78 of the 463 SHINE targets observed so far. Twenty-seven per cent of the systems have three or more components. Given the heterogeneity of the sample in terms of observing conditions and strategy, tailored routines were used for data reduction and analysis, some of which were specifically designed for these datasets. We then combined SPHERE data with literature and archival data, TESS light curves, and Gaia parallaxes and proper motions for an accurate characterisation of the systems. Combining all data, we were able to constrain the orbits of 25 systems. We carefully assessed the completeness of our sample for separations between 50–500 mas (corresponding to periods of a few years to a few decades), taking into account the initial selection biases and recovering part of the systems excluded from the original list due to their multiplicity. This allowed us to compare the binary frequency for our sample with previous studies and highlight interesting trends in the mass ratio and period distribution. We also found that, when such an estimate was possible, the values of the masses derived from dynamical arguments were in good agreement with the model predictions. Stellar and orbital spins appear fairly well aligned for the 12 stars that have enough data, which favours a disk fragmentation origin. Our results highlight the importance of combining different techniques when tackling complex problems such as the formation of binaries and show how large samples can be useful for more than one purpose.
  •  
6.
  • Simpson, E. K., et al. (författare)
  • WASP-37b : A 1.8 MJ exoplanet transiting a metal-poor star
  • 2011
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 141:1, s. 8-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the discovery of WASP-37b, a transiting hot Jupiter orbiting an m(v) = 12.7 G2-type dwarf, with a period of 3.577469 +/- 0.000011 d, transit epoch T-0 = 2455338.6188 +/- 0.0006 (HJD; dates throughout the paper are given in Coordinated Universal Time (UTC)), and a transit duration 0.1304(-0.0017)(+0.0018) d. The planetary companion has a mass M-p = 1.80 +/- 0.17 M-J and radius R-p = 1.16(-0.06)(+0.07) R-J, yielding a mean density of 1.15(-0.15)(+0.12) rho(J). From a spectral analysis, we find that the host star has M-star = 0.925 +/- 0.120 M-circle dot, R-star = 1.003 +/- 0.053 R-circle dot, T-eff = 5800 +/- 150 K, and [Fe/H] = -0.40 +/- 0.12. WASP-37 is therefore one of the lowest metallicity stars to host a transiting planet.
  •  
7.
  • Swayne, M.I., et al. (författare)
  • The EBLM Project– XI. Mass, radius, and effective temperature measurements for 23 M-dwarf companions to solar-type stars observed with CHEOPS
  • 2024
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 528:4, s. 5703-5722
  • Tidskriftsartikel (refereegranskat)abstract
    • Observations of low-mass stars have frequently shown a disagreement between observed stellar radii and radii predicted by theoretical stellar structure models. This ‘radius inflation’ problem could have an impact on both stellar and exoplanetary science. We present the final results of our observation programme with the CHaracterising ExOPlanet Satellite (CHEOPS) to obtain high-precision light curves of eclipsing binaries with low-mass stellar companions (EBLMs). Combined with the spectroscopic orbits of the solar-type companions, we can derive the masses, radii, and effective temperatures of 23 M-dwarf stars. We use the PYCHEOPS data analysis software to analyse their primary and secondary occultations. For all but one target, we also perform analyses with Transiting Exoplanet Survey Satellite (TESS) light curves for comparison. We have assessed the impact of starspot-induced variation on our derived parameters and account for this in our radius and effective temperature uncertainties using simulated light curves. We observe trends in inflation with both metallicity and orbital separation. We also observe a strong trend in the difference between theoretical and observational effective temperatures with metallicity. There is no such trend with orbital separation. These results are not consistent with the idea that the observed inflation in stellar radius combines with lower effective temperature to preserve the luminosity predicted by low-mass stellar models. Our EBLM systems provide high-quality and homogeneous measurements that can be used in further studies of radius inflation.
  •  
8.
  • Cabrera, J., et al. (författare)
  • Transiting exoplanets from the CoRoT space mission: XXVII. CoRoT-28b, a planet orbiting an evolved star, and CoRoT-29b, a planet showing an asymmetric transit
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 579
  • Tidskriftsartikel (refereegranskat)abstract
    • © ESO, 2015. Context. We present the discovery of two transiting extrasolar planets by the satellite CoRoT. Aims. We aim at a characterization of the planetary bulk parameters, which allow us to further investigate the formation and evolution of the planetary systems and the main properties of the host stars. Methods. We used the transit light curve to characterize the planetary parameters relative to the stellar parameters. The analysis of HARPS spectra established the planetary nature of the detections, providing their masses. Further photometric and spectroscopic ground-based observations provided stellar parameters (log g, Teff, vsini) to characterize the host stars. Our model takes the geometry of the transit to constrain the stellar density into account, which when linked to stellar evolutionary models, determines the bulk parameters of the star. Because of the asymmetric shape of the light curve of one of the planets, we had to include the possibility in our model that the stellar surface was not strictly spherical. Results. We present the planetary parameters of CoRoT-28b, a Jupiter-sized planet (mass 0.484 ± 0.087 MJup; radius 0.955 ± 0.066 RJup) orbiting an evolved star with an orbital period of 5.208 51 ± 0.000 38 days, and CoRoT-29b, another Jupiter-sized planet (mass 0.85 ± 0.20 MJup; radius 0.90 ± 0.16 RJup) orbiting an oblate star with an orbital period of 2.850 570 ± 0.000 006 days. The reason behind the asymmetry of the transit shape is not understood at this point. Conclusions. These two new planetary systems have very interesting properties and deserve further study, particularly in the case of the star CoRoT-29.
  •  
9.
  • Simpson, E. K., et al. (författare)
  • Independent Discovery of the Transiting Exoplanet HAT-P-14b
  • 2011
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 141:5, s. 161-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present SuperWASP observations of HAT-P-14b, a hot Jupiter discovered by Torres et al. The planet was found independently by the SuperWASP team and named WASP-27b after follow-up observations had secured the discovery, but prior to the publication by Torres et al. Our analysis of HAT-P-14/WASP-27 is in good agreement with the values found by Torres et al. and we provide additional evidence against astronomical false positives. Due to the brightness of the host star, V-mag = 10, HAT-P-14b is an attractive candidate for further characterization observations. The planet has a high impact parameter and the primary transit is close to grazing. This could readily reveal small deviations in the orbital parameters indicating the presence of a third body in the system, which may be causing the small but significant orbital eccentricity. Our results suggest that the planet may undergo a grazing secondary eclipse. However, even a non-detection would tightly constrain the system parameters.
  •  
10.
  • Vigan, A., et al. (författare)
  • First light of the VLT planet finder SPHERE I. Detection and characterization of the substellar companion GJ 758 B
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 587
  • Tidskriftsartikel (refereegranskat)abstract
    • GJ 758 B is a brown dwarf companion to a nearby (15.76%) solar-type, metal-rich (M/H = +0.2 dex) main-sequence star (G9V) that was discovered with Subaru/HiCIAO in 2009. From previous studies, it has drawn attention as being the coldest (similar to 600 K) companion ever directly imaged around a neighboring star. We present new high-contrast data obtained during the commissioning of the SPHERE instrument at the Very Large Telescope (VLT). The data was obtained in Y-, J-, H-, and K-s-bands with the dual-band imaging (DBI) mode of IRDIS, thus providing a broad coverage of the full near-infrared (near-IR) range at higher contrast and better spectral sampling than previously reported. In this new set of high-quality data, we report the re-detection of the companion, as well as the first detection of a new candidate closer-in to the star. We use the new eight photometric points for an extended comparison of GJ 758 B with empirical objects and four families of atmospheric models. From comparison to empirical object, we estimate a T8 spectral type, but none of the comparison objects can accurately represent the observed near-IR fluxes of GJ 758 B. From comparison to atmospheric models, we attribute a T-eff = 600 +/- 100 K, but we find that no atmospheric model can adequately fit all the fluxes of GJ 758 B. The lack of exploration of metal enrichment in model grids appears as a major limitation that prevents an accurate estimation of the companion physical parameters. The photometry of the new candidate companion is broadly consistent with L-type objects, but a second epoch with improved photometry is necessary to clarify its status. The new astrometry of GJ 758 B shows a significant proper motion since the last epoch. We use this result to improve the determination of the orbital characteristics using two fitting approaches: Least-Squares Monte Carlo and Markov chain Monte Carlo. We confirm the high-eccentricity of the orbit (peak at 0.5), and find a most likely semi-major axis of 46.05 AU. We also use our imaging data, as well as archival radial velocity data, to reject the possibility that this is a false positive effect created by an unseen, closer-in, companion. Finally, we analyze the sensitivity of our data to additional closer-in companions and reject the possibility of other massive brown dwarf companions down to 4-5 AU.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 23

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy