SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mowat Allan) "

Sökning: WFRF:(Mowat Allan)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Craddock, Nick, et al. (författare)
  • Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls
  • 2010
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 464:7289, s. 713-720
  • Tidskriftsartikel (refereegranskat)abstract
    • Copy number variants (CNVs) account for a major proportion of human genetic polymorphism and have been predicted to have an important role in genetic susceptibility to common disease. To address this we undertook a large, direct genome-wide study of association between CNVs and eight common human diseases. Using a purpose-designed array we typed,19,000 individuals into distinct copy-number classes at 3,432 polymorphic CNVs, including an estimated similar to 50% of all common CNVs larger than 500 base pairs. We identified several biological artefacts that lead to false-positive associations, including systematic CNV differences between DNAs derived from blood and cell lines. Association testing and follow-up replication analyses confirmed three loci where CNVs were associated with disease-IRGM for Crohn's disease, HLA for Crohn's disease, rheumatoid arthritis and type 1 diabetes, and TSPAN8 for type 2 diabetes-although in each case the locus had previously been identified in single nucleotide polymorphism (SNP)-based studies, reflecting our observation that most common CNVs that are well-typed on our array are well tagged by SNPs and so have been indirectly explored through SNP studies. We conclude that common CNVs that can be typed on existing platforms are unlikely to contribute greatly to the genetic basis of common human diseases.
  •  
2.
  • Günaltay, Sezin, 1986- (författare)
  • Dysregulated mucosal immune responses in microscopic colitis patients
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Microscopic colitis (MC), comprising collagenous colitis (CC) and lymphocytic colitis (LC) is a common cause of chronic watery diarrhea. The diagnosis relies on typical histopathological changes observed upon microscopic examination. The studies in this thesis investigated innate and adaptive immune responses in the colonic mucosa of MC patients, also comparing patients with active disease (CC and LC) and histopathologically in remission (CC/LC-HR). We first analyzed expression of interleukin-1/Toll-like receptor (IL-1/TLR) signaling regulators in MC patients (Paper I). Our results showed enhanced IRAK-M, microRNA-146a, -155 and -21 expressions, whereas IL-37 gene expression was reduced in CC and LC patients as compared to non-inflamed controls. These results suggest different pathophysiological mechanisms in MC patients. The mixed inflammatory cell infiltrations seen in the lamina propria of MC patients might be a result of dysregulated expression of chemotactic mediators. In Paper II, we showed that MC patients display mainly an increased expression of chemokines and chemokine receptors in active disease as compared to noninflamed controls. In Paper III, we examined if the decreased IL-37 expression seen in Paper I could mediate the upregulation of chemokines seen in Paper II. We showed that a relatively small reduction in the ability of epithelial cells to produce IL-37 results in mainly increased chemokine expressions in a pattern similar to the findings in Paper II. In order to understand the nature of infiltrating T cells commonly observed in MC patients, we analyzed the T cell receptor (TCR) β chains in colonic biopsies of MC patients (Paper IV). Our results showed significant differences in TCRβ repertoire, which suggests selectively expanded T cell clones in active MC and histopathologically in remission patients. Altogether, these results i) increase the knowledge of MC pathogenesis by showing changes in TLR signaling regulators, enhanced chemokine and their receptor expressions involved in a mixed immune cell infiltrations and selectively expanded T cell clones in CC and LC patients, as well as in histopathological remission ii) might potentially increase the possibility of more target-specific therapies based on IL-37 induction, chemokines or chemokine receptor inhibitions, or hindering T cell infiltration according to TCR clonality.
  •  
3.
  • Helgeby, Anja, 1967, et al. (författare)
  • The combined CTA1-DD/ISCOM adjuvant vector promotes priming of mucosal and systemic immunity to incorporated antigens by specific targeting of B cells.
  • 2006
  • Ingår i: Journal of immunology (Baltimore, Md. : 1950). - 0022-1767. ; 176:6, s. 3697-706
  • Forskningsöversikt (refereegranskat)abstract
    • The cholera toxin A1 (CTA1)-DD/QuilA-containing, immune-stimulating complex (ISCOM) vector is a rationally designed mucosal adjuvant that greatly potentiates humoral and cellular immune responses. It was developed to incorporate the distinctive properties of either adjuvant alone in a combination that exerted additive enhancing effects on mucosal immune responses. In this study we demonstrate that CTA1-DD and an unrelated Ag can be incorporated together into the ISCOM, resulting in greatly augmented immunogenicity of the Ag. To demonstrate its relevance for protection against infectious diseases, we tested the vector incorporating PR8 Ag from the influenza virus. After intranasal immunization we found that the immunogenicity of the PR8 proteins were significantly augmented by a mechanism that was enzyme dependent, because the presence of the enzymatically inactive CTA1R7K-DD mutant largely failed to enhance the response over that seen with ISCOMs alone. The combined vector was a highly effective enhancer of a broad range of immune responses, including specific serum Abs and balanced Th1 and Th2 CD4(+) T cell priming as well as a strong mucosal IgA response. Unlike unmodified ISCOMs, Ag incorporated into the combined vector could be presented by B cells in vitro and in vivo as well as by dendritic cells; it also accumulated in B cell follicles of draining lymph nodes when given s.c. and stimulated much enhanced germinal center reactions. Strikingly, the enhanced adjuvant activity of the combined vector was absent in B cell-deficient mice, supporting the idea that B cells are important for the adjuvant effects of the combined CTA1-DD/ISCOM vector.
  •  
4.
  • Joeris, Thorsten, et al. (författare)
  • Intestinal cDC1 drive cross-tolerance to epithelial-derived antigen via induction of FoxP3+CD8+ Tregs
  • 2021
  • Ingår i: Science Immunology. - : American Association for the Advancement of Science (AAAS). - 2470-9468. ; 6:60
  • Tidskriftsartikel (refereegranskat)abstract
    • Although CD8+ T cell tolerance to tissue-specific antigen (TSA) is essential for host homeostasis, the mechanisms underlying peripheral cross-tolerance and whether they may differ between tissue sites remain to be fully elucidated. Here, we demonstrate that peripheral cross-tolerance to intestinal epithelial cell (IEC)–derived antigen involves the generation and suppressive function of FoxP3+CD8+ T cells. FoxP3+CD8+ Treg generation was dependent on intestinal cDC1, whose absence led to a break of tolerance and epithelial destruction. Mechanistically, intestinal cDC1-derived PD-L1, TGFβ, and retinoic acid contributed to the generation of gut-tropic CCR9+CD103+FoxP3+CD8+ Tregs. Last, CD103-deficient CD8+ T cells lacked tolerogenic activity in vivo, indicating a role for CD103 in FoxP3+CD8+ Treg function. Our results describe a role for FoxP3+CD8+ Tregs in cross-tolerance in the intestine for which development requires intestinal cDC1.
  •  
5.
  • Kumawat, Ashok Kumar, 1982-, et al. (författare)
  • Expression and characterization of αvβ5 integrin on intestinal macrophages
  • 2018
  • Ingår i: European Journal of Immunology. - : Wiley-VCH Verlagsgesellschaft. - 0014-2980 .- 1521-4141. ; 48:7, s. 1181-1187
  • Tidskriftsartikel (refereegranskat)abstract
    • Macrophages play a crucial role in maintaining homeostasis in the intestine, but the underlying mechanisms have not yet been elucidated fully. Here we show for the first time that mature intestinal macrophages in mouse colon and small intestine express high levels of αvβ5 integrin, which acts as a receptor for the uptake of apoptotic cells and can activate molecules involved in several aspects of tissue homeostasis such as angiogenesis and remodelling of the extracellular matrix. αvβ5 is not expressed by other immune cells in the intestine, is already present on intestinal macrophages soon after birth, and its expression is not dependent on the microbiota. In adults, αvβ5 induces the differentiation of monocytes in response to the local environment and it confers intestinal macrophages with the ability to promote engulfment of apoptotic cells via engagement of the bridging molecule milk fat globule EGF-like molecule 8. In the absence of αvβ5, there are fewer monocytes in the mucosa and mature intestinal macrophages have decreased expression of metalloproteases and interleukin 10. Mice lacking αvβ5 on haematopoietic cells show increased susceptibility to chemical colitis and we conclude that αvβ5 contributes to the tissue repair by regulating the homeostatic properties of intestinal macrophages.
  •  
6.
  • Lança, Telma, et al. (författare)
  • IRF8 deficiency induces the transcriptional, functional, and epigenetic reprogramming of cDC1 into the cDC2 lineage
  • 2022
  • Ingår i: Immunity. - : Elsevier BV. - 1074-7613 .- 1097-4180. ; 55:8, s. 11-1447
  • Tidskriftsartikel (refereegranskat)abstract
    • Conventional dendritic cells (cDCs) consist of two major functionally and phenotypically distinct subsets, cDC1 and cDC2, whose development is dependent on distinct sets of transcription factors. Interferon regulatory factor 8 (IRF8) is required at multiple stages of cDC1 development, but its role in committed cDC1 remains unclear. Here, we used Xcr1-cre to delete Irf8 in committed cDC1 and demonstrate that Irf8 is required for maintaining the identity of cDC1. In the absence of Irf8, committed cDC1 acquired the transcriptional, functional, and chromatin accessibility properties of cDC2. This conversion was independent of Irf4 and was associated with the decreased accessibility of putative IRF8, Batf3, and composite AP-1-IRF (AICE)-binding elements, together with increased accessibility of cDC2-associated transcription-factor-binding elements. Thus, IRF8 expression by committed cDC1 is required for preventing their conversion into cDC2-like cells.
  •  
7.
  • Luda, Katarzyna M., et al. (författare)
  • Identification and characterization of murine glycoprotein 2-expressing intestinal dendritic cells
  • 2022
  • Ingår i: Scandinavian Journal of Immunology. - : Wiley. - 0300-9475 .- 1365-3083. ; 96:5, s. 1-12
  • Tidskriftsartikel (refereegranskat)abstract
    • The intestinal lamina propria (LP) contains distinct subsets of classical dendritic cells (cDC), each playing key non-redundant roles in intestinal immune homeostasis. Here, we show that glycoprotein 2 (GP2), a GPI-anchored protein and receptor for bacterial type-I fimbriae, is selectively expressed by CD103+CD11b+ cDC in the murine small intestine (SI). GP2 expression was induced on CD103+CD11b+ cDC within the SI-LP and was regulated by IRF4, TGFβR1- and retinoic acid signalling. Mice selectively lacking Gp2 on CD103+CD11b+ cDC (huLang-Cre.gp2fl/fl mice) had normal numbers and proportions of innate and adaptive immune cells in the SI-LP suggesting that GP2 expression by CD103+CD11b+ cDC is not required for intestinal immune homoeostasis.
  •  
8.
  • Monteleone, Ivan, et al. (författare)
  • IL-10-dependent partial refractoriness to Toll-like receptor stimulation modulates gut mucosal dendritic cell function
  • 2008
  • Ingår i: European Journal of Immunology. - : Wiley. - 1521-4141 .- 0014-2980. ; 38:6, s. 1533-1547
  • Tidskriftsartikel (refereegranskat)abstract
    • The default response of the intestinal immune system to most antigens is the induction of immunological tolerance, which is difficult to reconcile with the constant exposure to ligands for TLR and other pattern recognition receptors. We showed previously that dendritic cells (DC) from the lamina propria of normal mouse intestine may be inherently tolerogenic and here we have explored how this might relate to the expression and function of Toll-like receptors (TLR). Lamina propria (LP) DC showed higher levels of TLR 2, 3, 4 and 9 protein expression than spleen and MLN DC, with most TLR-expressing DC in the gut being CD11c(lo), class II MHClo, CD103(-), CD11b(-) and F4/80(-). TLR expression by lamina propria DC was low in the upper small intestine and higher in distal small intestine and colon. Freshly isolated lamina propria DC expressed some CD40, CD80, CD86 and functional CCR7. These were up-regulated on CD11c(lo), but not on CD1lc(hi) LP DC by stimulation via TLR. However, there was little induction of IL-12 by either subset in response to TLR ligation. This was associated with constitutive IL-10 production and was reversed by blocking IL-10 function. Thus, IL-10 may maintain LP DC in a partially unresponsive state to TLR ligation, allowing them to have a critical role in immune homeostasis in the gut.
  •  
9.
  • Mowat, Allan, et al. (författare)
  • Regional specialization within the intestinal immune system.
  • 2014
  • Ingår i: Nature Reviews. Immunology. - : Springer Science and Business Media LLC. - 1474-1741 .- 1474-1733. ; 14:10, s. 667-685
  • Forskningsöversikt (refereegranskat)abstract
    • The intestine represents the largest compartment of the immune system. It is continually exposed to antigens and immunomodulatory agents from the diet and the commensal microbiota, and it is the port of entry for many clinically important pathogens. Intestinal immune processes are also increasingly implicated in controlling disease development elsewhere in the body. In this Review, we detail the anatomical and physiological distinctions that are observed in the small and large intestines, and we suggest how these may account for the diversity in the immune apparatus that is seen throughout the intestine. We describe how the distribution of innate, adaptive and innate-like immune cells varies in different segments of the intestine and discuss the environmental factors that may influence this. Finally, we consider the implications of regional immune specialization for inflammatory disease in the intestine.
  •  
10.
  • Pærregaard, Simone Isling, et al. (författare)
  • The small and large intestine contain related mesenchymal subsets that derive from embryonic Gli1 + precursors.
  • 2023
  • Ingår i: Nature Communications. - 2041-1723. ; 14, s. 1-16
  • Tidskriftsartikel (refereegranskat)abstract
    • The intestinal lamina propria contains a diverse network of fibroblasts that provide key support functions to cells within their local environment. Despite this, our understanding of the diversity, location and ontogeny of fibroblasts within and along the length of the intestine remains incomplete. Here we show that the small and large intestinal lamina propria contain similar fibroblast subsets that locate in specific anatomical niches. Nevertheless, we find that the transcriptional profile of similar fibroblast subsets differs markedly between the small intestine and colon suggesting region specific functions. We perform in vivo transplantation and lineage-tracing experiments to demonstrate that adult intestinal fibroblast subsets, smooth muscle cells and pericytes derive from Gli1-expressing precursors present in embryonic day 12.5 intestine. Trajectory analysis of single cell RNA-seq datasets of E12.5 and adult mesenchymal cells suggest that adult smooth muscle cells and fibroblasts derive from distinct embryonic intermediates and that adult fibroblast subsets develop in a linear trajectory from CD81 + fibroblasts. Finally, we provide evidence that colonic subepithelial PDGFRα hi fibroblasts comprise several functionally distinct populations that originate from an Fgfr2-expressing fibroblast intermediate. Our results provide insights into intestinal stromal cell diversity, location, function, and ontogeny, with implications for intestinal development and homeostasis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy