SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mustonen Ville) "

Sökning: WFRF:(Mustonen Ville)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alexandrov, Ludmil B, et al. (författare)
  • The repertoire of mutational signatures in human cancer
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 578:7793, s. 94-101
  • Tidskriftsartikel (refereegranskat)abstract
    • Somatic mutations in cancer genomes are caused by multiple mutational processes, each of which generates a characteristic mutational signature1. Here, as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium2 of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), we characterized mutational signatures using 84,729,690 somatic mutations from 4,645 whole-genome and 19,184 exome sequences that encompass most types of cancer. We identified 49 single-base-substitution, 11 doublet-base-substitution, 4 clustered-base-substitution and 17 small insertion-and-deletion signatures. The substantial size of our dataset, compared with previous analyses3-15, enabled the discovery of new signatures, the separation of overlapping signatures and the decomposition of signatures into components that may represent associated-but distinct-DNA damage, repair and/or replication mechanisms. By estimating the contribution of each signature to the mutational catalogues of individual cancer genomes, we revealed associations of signatures to exogenous or endogenous exposures, as well as to defective DNA-maintenance processes. However, many signatures are of unknown cause. This analysis provides a systematic perspective on the repertoire of mutational processes that contribute to the development of human cancer.
  •  
2.
  • Benkwitz-Bedford, Sam, et al. (författare)
  • Machine Learning Prediction of Resistance to Subinhibitory Antimicrobial Concentrations from Escherichia coli Genomes.
  • 2021
  • Ingår i: mSystems. - 2379-5077. ; 6:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Escherichia coli is an important cause of bacterial infections worldwide, with multidrug-resistant strains incurring substantial costs on human lives. Besides therapeutic concentrations of antimicrobials in health care settings, the presence of subinhibitory antimicrobial residues in the environment and in clinics selects for antimicrobial resistance (AMR), but the underlying genetic repertoire is less well understood. Here, we used machine learning to predict the population doubling time and cell growth yield of 1,407 genetically diverse E. coli strains expanding under exposure to three subinhibitory concentrations of six classes of antimicrobials from single-nucleotide genetic variants, accessory gene variation, and the presence of known AMR genes. We predicted cell growth yields in the held-out test data with an average correlation (Spearman's ρ) of 0.63 (0.36 to 0.81 across concentrations) and cell doubling times with an average correlation of 0.59 (0.32 to 0.92 across concentrations), with moderate increases in sample size unlikely to improve predictions further. This finding points to the remaining missing heritability of growth under antimicrobial exposure being explained by effects that are too rare or weak to be captured unless sample size is dramatically increased, or by effects other than those conferred by the presence of individual single-nucleotide polymorphisms (SNPs) and genes. Predictions based on whole-genome information were generally superior to those based only on known AMR genes and were accurate for AMR resistance at therapeutic concentrations. We pinpointed genes and SNPs determining the predicted growth and thereby recapitulated many known AMR determinants. Finally, we estimated the effect sizes of resistance genes across the entire collection of strains, disclosing the growth effects for known resistance genes in each individual strain. Our results underscore the potential of predictive modeling of growth patterns from genomic data under subinhibitory concentrations of antimicrobials, although the remaining missing heritability poses a challenge for achieving the accuracy and precision required for clinical use. IMPORTANCE Predicting bacterial growth from genome sequences is important for a rapid characterization of strains in clinical diagnostics and to disclose candidate novel targets for anti-infective drugs. Previous studies have dissected the relationship between bacterial growth and genotype in mutant libraries for laboratory strains, yet no study so far has examined the predictive power of genome sequence in natural strains. In this study, we used a high-throughput phenotypic assay to measure the growth of a systematic collection of natural Escherichia coli strains and then employed machine learning models to predict bacterial growth from genomic data under nontherapeutic subinhibitory concentrations of antimicrobials that are common in nonclinical settings. We found a moderate to strong correlation between predicted and actual values for the different collected data sets. Moreover, we observed that the known resistance genes are still effective at sublethal concentrations, pointing to clinical implications of these concentrations.
  •  
3.
  • Bergström, Anders, et al. (författare)
  • A high-definition view of functional genetic variation from natural yeast genomes.
  • 2014
  • Ingår i: Molecular biology and evolution. - : Oxford University Press (OUP). - 1537-1719 .- 0737-4038. ; 31:4, s. 872-88
  • Tidskriftsartikel (refereegranskat)abstract
    • The question of how genetic variation in a population influences phenotypic variation and evolution is of major importance in modern biology. Yet much is still unknown about the relative functional importance of different forms of genome variation and how they are shaped by evolutionary processes. Here we address these questions by population level sequencing of 42 strains from the budding yeast Saccharomyces cerevisiae and its closest relative S. paradoxus. We find that genome content variation, in the form of presence or absence as well as copy number of genetic material, is higher within S. cerevisiae than within S. paradoxus, despite genetic distances as measured in single-nucleotide polymorphisms being vastly smaller within the former species. This genome content variation, as well as loss-of-function variation in the form of premature stop codons and frameshifting indels, is heavily enriched in the subtelomeres, strongly reinforcing the relevance of these regions to functional evolution. Genes affected by these likely functional forms of variation are enriched for functions mediating interaction with the external environment (sugar transport and metabolism, flocculation, metal transport, and metabolism). Our results and analyses provide a comprehensive view of genomic diversity in budding yeast and expose surprising and pronounced differences between the variation within S. cerevisiae and that within S. paradoxus. We also believe that the sequence data and de novo assemblies will constitute a useful resource for further evolutionary and population genomics studies.
  •  
4.
  • Cubillos, Francisco A, et al. (författare)
  • High-resolution mapping of complex traits with a four-parent advanced intercross yeast population.
  • 2013
  • Ingår i: Genetics. - : Oxford University Press (OUP). - 1943-2631. ; 195:3, s. 1141-55
  • Tidskriftsartikel (refereegranskat)abstract
    • A large fraction of human complex trait heritability is due to a high number of variants with small marginal effects and their interactions with genotype and environment. Such alleles are more easily studied in model organisms, where environment, genetic makeup, and allele frequencies can be controlled. Here, we examine the effect of natural genetic variation on heritable traits in a very large pool of baker's yeast from a multiparent 12th generation intercross. We selected four representative founder strains to produce the Saccharomyces Genome Resequencing Project (SGRP)-4X mapping population and sequenced 192 segregants to generate an accurate genetic map. Using these individuals, we mapped 25 loci linked to growth traits under heat stress, arsenite, and paraquat, the majority of which were best explained by a diverging phenotype caused by a single allele in one condition. By sequencing pooled DNA from millions of segregants grown under heat stress, we further identified 34 and 39 regions selected in haploid and diploid pools, respectively, with most of the selection against a single allele. While the most parsimonious model for the majority of loci mapped using either approach was the effect of an allele private to one founder, we could validate examples of pleiotropic effects and complex allelic series at a locus. SGRP-4X is a deeply characterized resource that provides a framework for powerful and high-resolution genetic analysis of yeast phenotypes and serves as a test bed for testing avenues to attack human complex traits.
  •  
5.
  • Ibstedt, Sebastian, 1983, et al. (författare)
  • Dissection of advanced intercross lines provides information on evolution of yeast in shifting metal abundances
  • 2012
  • Ingår i: Experimental Approaches to Evolution and Ecology using Yeast (EMBO, Heidelberg, October 2012). ; 2012
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Metals can be friends or foes, depending on their chemical reactivity, dose or mode of exposure. Unfortunately, a general perspective on the importance of different processes for maintaining evolutionary flexibility and physiological homeostasis with regard to metal exposure is lacking. In order to understand the processes that contribute to metal toxicity and resistance in natural populations of Saccharomyces cerevisiae, we have analyzed a twelfth generation intercross between geographically and ecologically distinct populations. Large-scale phenotyping of highly recombined segregants allows us to pinpoint causative alleles to narrow intervals and to make inferences about the evolutionary history of complex traits in natural populations with regard to pleiotropy and epistasis. We show that metal detoxification in Saccharomyces cerevisiae is highly dependent on specific stress, while epistasis depends on population-specific alleles. These results are consistent with an evolutionary history of bottle-necks, rapid dispersion into ecologically differing habitats followed by independent evolutionary paths.
  •  
6.
  • Li, Jing, et al. (författare)
  • Shared Molecular Targets Confer Resistance over Short and Long Evolutionary Timescales
  • 2019
  • Ingår i: Molecular Biology and Evolution. - : Oxford University Press (OUP). - 1537-1719 .- 0737-4038. ; 36:4, s. 691-708
  • Tidskriftsartikel (refereegranskat)abstract
    • Pre-existing and de novo genetic variants can both drive adaptation to environmental changes, but their relative contributions and interplay remain poorly understood. Here we investigated the evolutionary dynamics in drug-treated yeast populations with different levels of pre-existing variation by experimental evolution coupled with time-resolved sequencing and phenotyping. We found a doubling of pre-existing variation alone boosts the adaptation by 64.1% and 51.5% in hydroxyurea and rapamycin, respectively. The causative pre-existing and de novo variants were selected on shared targets: RNR4 in hydroxyurea and TOR1, TOR2 in rapamycin. Interestingly, the pre-existing and de novo TOR variants map to different functional domains and act via distinct mechanisms. The pre-existing TOR variants from two domesticated strains exhibited opposite rapamycin resistance effects, reflecting lineage-specific functional divergence. This study provides a dynamic view on how pre-existing and de novo variants interactively drive adaptation and deepens our understanding of clonally evolving populations.
  •  
7.
  • Moradigaravand, Danesh, et al. (författare)
  • Prediction of antibiotic resistance in Escherichia coli from large-scale pan-genome data.
  • 2018
  • Ingår i: PLoS computational biology. - : Public Library of Science (PLoS). - 1553-7358. ; 14:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The emergence of microbial antibiotic resistance is a global health threat. In clinical settings, the key to controlling spread of resistant strains is accurate and rapid detection. As traditional culture-based methods are time consuming, genetic approaches have recently been developed for this task. The detection of antibiotic resistance is typically made by measuring a few known determinants previously identified from genome sequencing, and thus requires the prior knowledge of its biological mechanisms. To overcome this limitation, we employed machine learning models to predict resistance to 11 compounds across four classes of antibiotics from existing and novel whole genome sequences of 1936 E. coli strains. We considered a range of methods, and examined population structure, isolation year, gene content, and polymorphism information as predictors. Gradient boosted decision trees consistently outperformed alternative models with an average accuracy of 0.91 on held-out data (range 0.81-0.97). While the best models most frequently employed gene content, an average accuracy score of 0.90 could be obtained using population structure information alone. Single nucleotide variation data were less useful, and significantly improved prediction only for two antibiotics, including ciprofloxacin. These results demonstrate that antibiotic resistance in E. coli can be accurately predicted from whole genome sequences without a priori knowledge of mechanisms, and that both genomic and epidemiological data can be informative. This paves way to integrating machine learning approaches into diagnostic tools in the clinic.
  •  
8.
  • Nik-Zainal, Serena, et al. (författare)
  • Landscape of somatic mutations in 560 breast cancer whole-genome sequences
  • 2016
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 534:7605, s. 47-54
  • Tidskriftsartikel (refereegranskat)abstract
    • We analysed whole-genome sequences of 560 breast cancers to advance understanding of the driver mutations conferring clonal advantage and the mutational processes generating somatic mutations. We found that 93 protein-coding cancer genes carried probable driver mutations. Some non-coding regions exhibited high mutation frequencies, but most have distinctive structural features probably causing elevated mutation rates and do not contain driver mutations. Mutational signature analysis was extended to genome rearrangements and revealed twelve base substitution and six rearrangement signatures. Three rearrangement signatures, characterized by tandem duplications or deletions, appear associated with defective homologous-recombination-based DNA repair: one with deficient BRCA1 function, another with deficient BRCA1 or BRCA2 function, the cause of the third is unknown. This analysis of all classes of somatic mutation across exons, introns and intergenic regions highlights the repertoire of cancer genes and mutational processes operating, and progresses towards a comprehensive account of the somatic genetic basis of breast cancer.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8
Typ av publikation
tidskriftsartikel (7)
konferensbidrag (1)
Typ av innehåll
refereegranskat (7)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Mustonen, Ville (8)
Warringer, Jonas, 19 ... (6)
Farewell, Anne, 1961 (2)
Bergström, Anders (2)
Ringnér, Markus (2)
Borg, Åke (2)
visa fler...
Staaf, Johan (2)
Moradigaravand, Dane ... (2)
Palm, Martin (2)
Alexandrov, Ludmil B ... (2)
Stratton, Michael R. (2)
Morganella, Sandro (2)
Børresen-Dale, Anne- ... (1)
Caldas, Carlos (1)
Stunnenberg, Hendrik ... (1)
Li, Jing (1)
Thomas, Gilles (1)
Butler, Adam (1)
Nik-Zainal, Serena (1)
Wedge, David C. (1)
Boyault, Sandrine (1)
Desmedt, Christine (1)
Foekens, John A. (1)
Knappskog, Stian (1)
Lakhani, Sunil R. (1)
Martin, Sancha (1)
Raine, Keiran (1)
Ramakrishna, Manasa (1)
Richardson, Andrea L ... (1)
Span, Paul N. (1)
Vincent-Salomon, Ann ... (1)
Futreal, P. Andrew (1)
Campbell, Peter J. (1)
Kim, Jaegil (1)
Haradhvala, Nicholas ... (1)
Huang, Mi Ni (1)
Tian Ng, Alvin Wei (1)
Wu, Yang (1)
Boot, Arnoud (1)
Covington, Kyle R (1)
Gordenin, Dmitry A (1)
Bergstrom, Erik N (1)
Islam, S M Ashiqul (1)
Lopez-Bigas, Nuria (1)
Klimczak, Leszek J (1)
McPherson, John R (1)
Sabarinathan, Radhak ... (1)
Wheeler, David A (1)
Getz, Gad (1)
Rozen, Steven G (1)
visa färre...
Lärosäte
Göteborgs universitet (6)
Lunds universitet (2)
Chalmers tekniska högskola (1)
Karolinska Institutet (1)
Språk
Engelska (8)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (6)
Medicin och hälsovetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy