SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nagtegaal Iris D.) "

Sökning: WFRF:(Nagtegaal Iris D.)

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • D'Souza, Nigel, et al. (författare)
  • Definition of the Rectum An International, Expert-based Delphi Consensus
  • 2019
  • Ingår i: Annals of Surgery. - : LIPPINCOTT WILLIAMS & WILKINS. - 0003-4932 .- 1528-1140. ; 270:6, s. 955-959
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The wide global variation in the definition of the rectum has led to significant inconsistencies in trial recruitment, clinical management, and outcomes. Surgical technique and use of preoperative treatment for a cancer of the rectum and sigmoid colon are radically different and dependent on the local definitions employed by the clinical team. A consensus definition of the rectum is needed to standardise treatment. Methods: The consensus was conducted using the Delphi technique with multidisciplinary colorectal experts from October, 2017 to April, 2018. Results: Eleven different definitions for the rectum were used by participants in the consensus. Magnetic resonance imaging (MRI) was the most frequent modality used to define the rectum (67%), and the preferred modality for 72% of participants. The most agreed consensus landmark (56%) was "the sigmoid take-off,'' an anatomic, image-based definition of the junction of the mesorectum and mesocolon. In the second round, 81% of participants agreed that the sigmoid take-off as seen on computed tomography or MRI achieved consensus, and that it could be implemented in their institution. Also, 87% were satisfied with the sigmoid take-off as the consensus landmark. Conclusion: An international consensus definition for the rectumis the point of the sigmoid take-off as visualized on imaging. The sigmoid take-off can be identified as the mesocolon elongates as the ventral and horizontal course of the sigmoid on axial and sagittal views respectively on cross-sectional imaging. Routine application of this landmark during multidisciplinary team discussion for all patients will enable greater consistency in tumour localisation.
  •  
2.
  • Bahadoer, Renu R., et al. (författare)
  • Short-course radiotherapy followed by chemotherapy before total mesorectal excision (TME) versus preoperative chemoradiotherapy, TME, and optional adjuvant chemotherapy in locally advanced rectal cancer (RAPIDO) : a randomised, open-label, phase 3 trial
  • 2021
  • Ingår i: The Lancet Oncology. - : Elsevier. - 1470-2045 .- 1474-5488. ; 22:1, s. 29-42
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Systemic relapses remain a major problem in locally advanced rectal cancer. Using short-course radiotherapy followed by chemotherapy and delayed surgery, the Rectal cancer And Preoperative Induction therapy followed by Dedicated Operation (RAPIDO) trial aimed to reduce distant metastases without compromising locoregional control. Methods In this multicentre, open-label, randomised, controlled, phase 3 trial, participants were recruited from 54 centres in the Netherlands, Sweden, Spain, Slovenia, Denmark, Norway, and the USA. Patients were eligible if they were aged 18 years or older, with an Eastern Cooperative Oncology Group (ECOG) performance status of 0-1, had a biopsy-proven, newly diagnosed, primary, locally advanced rectal adenocardnoma, which was classified as high risk on pelvic MRI (with at least one of the following criteria: clinical tumour [cT] stage cT4a or cT4b, extramural vascular invasion, clinical nodal [cN] stage cN2, involved mesorectal fascia, or enlarged lateral lymph nodes), were mentally and physically fit for chemotherapy, and could be assessed for staging within S weeks before randomisation. Eligible participants were randomly assigned (1:1), using a management system with a randomly varying block design (each block size randomly chosen to contain two to four allocations), stratified by centre, ECOG performance status, cT stage, and cN stage, to either the experimental or standard of care group. All investigators remained masked for the primary endpoint until a prespecified number of events was reached. Patients allocated to the experimental treatment group received short-course radiotherapy (5 x 5 Gy over a maximum of 8 days) followed by six cycles of CAPDX chemotherapy (capecitabine 1000 mg/m(2) orally twice daily on days 1-14, oxaliplatin 130 mg/m(2) intravenously on day 1, and a chemotherapy-free interval between days 15-21) or nine cycles of FOLFOX4 (oxaliplatin 85 mg/m(2) intravenously on day 1, leucovorin [folinic acid] 200 mg/m 2 intravenously on days 1 and 2, followed by bolus fluorouracil 400 mg/m(2) intravenously and fluorouracil 600 mg/m 2 intravenously for 22 h on days 1 and 2, and a chemotherapy-free interval between days 3-14) followed by total mesorectal excision. Choice of CAPDX or FOLFOX4 was per physician discretion or hospital policy. Patients allocated to the standard of care group received 28 daily fractions of 1.8 Gy up to 50.4 Gy or 25 fractions of 2.0 Gy up to 50.0 Gy (per physician discretion or hospital policy), with concomitant twice-daily oral capecitabine 825 mg/m(2) followed by total mesorectal excision and, if stipulated by hospital policy, adjuvant chemotherapy with eight cycles of CAPDX or 12 cycles of FOLFOX4. The primary endpoint was 3-year disease-related treatment failure, defined as the first occurrence of locoregional failure, distant metastasis, new primary colorectal tumour, or treatment-related death, assessed in the intention-to-treat population. Safety was assessed by intention to treat. This study is registered with the EudraCT, 2010-023957-12, and ClinicalTrials.gov , NCT01558921, and is now complete. Findings Between June 21,2011, and June 2,2016,920 patients were enrolled and randomly assigned to a treatment, of whom 912 were eligible (462 in the experimental group; 450 in the standard of care group). Median follow-up was 4.6 years (IQR 3.5-5.5). At 3 years after randomisation, the cumulative probability of disease-related treatment failure was 23.7% (95% CI 19.8-27.6) in the experimental group versus 30.4% (26.1-34.6) in the standard of care group (hazard ratio 0.75, 95% CI 0.60-0-95; p=0-019). The most common grade 3 or higher adverse event during preoperative therapy in both groups was diarrhoea (81 [18%] of 460 patients in the experimental group and 41 [9%] of 441 in the standard of care group) and neurological toxicity during adjuvant chemotherapy in the standard of care group (16 [9%] of 187 patients). Serious adverse events occurred in 177 (38%) of 460 participants in the experimental group and, in the standard of care group, in 87 (34%) of 254 patients without adjuvant chemotherapy and in 64 (34%) of 187 with adjuvant chemotherapy. Treatment-related deaths occurred in four participants in the experimental group (one cardiac arrest, one pulmonary embolism, two infectious complications) and in four participants in the standard of care group (one pulmonary embolism, one neutropenic sepsis, one aspiration, one suicide due to severe depression). Interpretation The observed decreased probability of disease-related treatment failure in the experimental group is probably indicative of the increased efficacy of preoperative chemotherapy as opposed to adjuvant chemotherapy in this setting. Therefore, the experimental treatment can be considered as a new standard of care in high-risk locally advanced rectal cancer.
  •  
3.
  • Bokhorst, John-Melle, et al. (författare)
  • Deep learning for multi-class semantic segmentation enables colorectal cancer detection and classification in digital pathology images
  • 2023
  • Ingår i: Scientific Reports. - : NATURE PORTFOLIO. - 2045-2322. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In colorectal cancer (CRC), artificial intelligence (AI) can alleviate the laborious task of characterization and reporting on resected biopsies, including polyps, the numbers of which are increasing as a result of CRC population screening programs ongoing in many countries all around the globe. Here, we present an approach to address two major challenges in the automated assessment of CRC histopathology whole-slide images. We present an AI-based method to segment multiple (n=14 ) tissue compartments in the H &E-stained whole-slide image, which provides a different, more perceptible picture of tissue morphology and composition. We test and compare a panel of state-of-the-art loss functions available for segmentation models, and provide indications about their use in histopathology image segmentation, based on the analysis of (a) a multi-centric cohort of CRC cases from five medical centers in the Netherlands and Germany, and (b) two publicly available datasets on segmentation in CRC. We used the best performing AI model as the basis for a computer-aided diagnosis system that classifies colon biopsies into four main categories that are relevant pathologically. We report the performance of this system on an independent cohort of more than 1000 patients. The results show that with a good segmentation network as a base, a tool can be developed which can support pathologists in the risk stratification of colorectal cancer patients, among other possible uses. We have made the segmentation model available for research use on .
  •  
4.
  • Bokhorst, John-Melle, et al. (författare)
  • Fully Automated Tumor Bud Assessment in Hematoxylin and Eosin-Stained Whole Slide Images of Colorectal Cancer
  • 2023
  • Ingår i: Modern Pathology. - : ELSEVIER SCIENCE INC. - 0893-3952 .- 1530-0285. ; 36:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Tumor budding (TB), the presence of single cells or small clusters of up to 4 tumor cells at the invasive front of colorectal cancer (CRC), is a proven risk factor for adverse outcomes. International definitions are necessary to reduce interobserver variability. According to the current international guidelines, hotspots at the invasive front should be counted in hematoxylin and eosin (H & E)-stained slides. This is time-consuming and prone to interobserver variability; therefore, there is a need for computer-aided diagnosis solutions. In this study, we report an artificial intelligence-based method for detecting TB in H & E-stained whole slide images. We propose a fully automated pipeline to identify the tumor border, detect tumor buds, characterize them based on the number of tumor cells, and produce a TB density map to identify the TB hotspot. The method outputs the TB count in the hotspot as a computational biomarker. We show that the proposed automated TB detection workflow performs on par with a panel of 5 pathologists at detecting tumor buds and that the hotspot-based TB count is an independent prognosticator in both the univariate and the multivariate analysis, validated on a cohort of n 1/4 981 patients with CRC. Computer-aided detection of tumor buds based on deep learning can perform on par with expert pathologists for the detection and quantification of tumor buds in H & E-stained CRC histopathology slides, strongly facilitating the introduction of budding as an independent prognosticator in clinical routine and clinical trials. & COPY; 2023 THE AUTHORS. Published by Elsevier Inc. on behalf of the United States & Canadian Academy of Pathology. This is an open access article under the CC BY license (http://creativecommons.org/ licenses/by/4.0/).
  •  
5.
  • Bokhorst, John-Melle, et al. (författare)
  • Semi-Supervised Learning to Automate Tumor Bud Detection in Cytokeratin-Stained Whole-Slide Images of Colorectal Cancer
  • 2023
  • Ingår i: Cancers. - : MDPI. - 2072-6694. ; 15:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Tumor budding is a histopathological biomarker associated with metastases and adverse survival outcomes in colorectal carcinoma (CRC) patients. It is characterized by the presence of single tumor cells or small clusters of cells within the tumor or at the tumor-invasion front. In order to obtain a tumor budding score for a patient, the region with the highest tumor bud density must first be visually identified by a pathologist, after which buds will be counted in the chosen hotspot field. The automation of this process will expectedly increase efficiency and reproducibility. Here, we present a deep learning convolutional neural network model that automates the above procedure. For model training, we used a semi-supervised learning method, to maximize the detection performance despite the limited amount of labeled training data. The model was tested on an independent dataset in which human- and machine-selected hotspots were mapped in relation to each other and manual and machine detected tumor bud numbers in the manually selected fields were compared. We report the results of the proposed method in comparison with visual assessment by pathologists. We show that the automated tumor bud count achieves a prognostic value comparable with visual estimation, while based on an objective and reproducible quantification. We also explore novel metrics to quantify buds such as density and dispersion and report their prognostic value. We have made the model available for research use on the grand-challenge platform.
  •  
6.
  • Galon, Jerome, et al. (författare)
  • Cancer classification using the Immunoscore : a worldwide task force
  • 2012
  • Ingår i: Journal of Translational Medicine. - : Springer Science and Business Media LLC. - 1479-5876 .- 1479-5876. ; 10, s. 205-
  • Forskningsöversikt (refereegranskat)abstract
    • Prediction of clinical outcome in cancer is usually achieved by histopathological evaluation of tissue samples obtained during surgical resection of the primary tumor. Traditional tumor staging (AJCC/UICC-TNM classification) summarizes data on tumor burden (T), presence of cancer cells in draining and regional lymph nodes (N) and evidence for metastases (M). However, it is now recognized that clinical outcome can significantly vary among patients within the same stage. The current classification provides limited prognostic information, and does not predict response to therapy. Recent literature has alluded to the importance of the host immune system in controlling tumor progression. Thus, evidence supports the notion to include immunological biomarkers, implemented as a tool for the prediction of prognosis and response to therapy. Accumulating data, collected from large cohorts of human cancers, has demonstrated the impact of immune-classification, which has a prognostic value that may add to the significance of the AJCC/UICC TNM-classification. It is therefore imperative to begin to incorporate the ` Immunoscore' into traditional classification, thus providing an essential prognostic and potentially predictive tool. Introduction of this parameter as a biomarker to classify cancers, as part of routine diagnostic and prognostic assessment of tumors, will facilitate clinical decision-making including rational stratification of patient treatment. Equally, the inherent complexity of quantitative immunohistochemistry, in conjunction with protocol variation across laboratories, analysis of different immune cell types, inconsistent region selection criteria, and variable ways to quantify immune infiltration, all underline the urgent requirement to reach assay harmonization. In an effort to promote the Immunoscore in routine clinical settings, an international task force was initiated. This review represents a follow-up of the announcement of this initiative, and of the J Transl Med. editorial from January 2012. Immunophenotyping of tumors may provide crucial novel prognostic information. The results of this international validation may result in the implementation of the Immunoscore as a new component for the classification of cancer, designated TNM-I (TNM-Immune).
  •  
7.
  • Galon, Jerome, et al. (författare)
  • Towards the introduction of the 'Immunoscore' in the classification of malignant tumours
  • 2014
  • Ingår i: Journal of Pathology. - : Wiley-Blackwell. - 0022-3417 .- 1096-9896. ; 232:2, s. 199-209
  • Forskningsöversikt (refereegranskat)abstract
    • The American Joint Committee on Cancer/Union Internationale Contre le Cancer (AJCC/UICC) TNM staging system provides the most reliable guidelines for the routine prognostication and treatment of colorectal carcinoma. This traditional tumour staging summarizes data on tumour burden (T), the presence of cancer cells in draining and regional lymph nodes (N) and evidence for distant metastases (M). However, it is now recognized that the clinical outcome can vary significantly among patients within the same stage. The current classification provides limited prognostic information and does not predict response to therapy. Multiple ways to classify cancer and to distinguish different subtypes of colorectal cancer have been proposed, including morphology, cell origin, molecular pathways, mutation status and gene expression-based stratification. These parameters rely on tumour-cell characteristics. Extensive literature has investigated the host immune response against cancer and demonstrated the prognostic impact of the in situ immune cell infiltrate in tumours. A methodology named Immunoscore' has been defined to quantify the in situ immune infiltrate. In colorectal cancer, the Immunoscore may add to the significance of the current AJCC/UICC TNM classification, since it has been demonstrated to be a prognostic factor superior to the AJCC/UICC TNM classification. An international consortium has been initiated to validate and promote the Immunoscore in routine clinical settings. The results of this international consortium may result in the implementation of the Immunoscore as a new component for the classification of cancer, designated TNM-I (TNM-Immune).
  •  
8.
  • Geessink, Oscar G. F., et al. (författare)
  • Computer aided quantification of intratumoral stroma yields an independent prognosticator in rectal cancer
  • 2019
  • Ingår i: Cellular Oncology. - : SPRINGER. - 2211-3428 .- 2211-3436. ; 42:3, s. 331-341
  • Tidskriftsartikel (refereegranskat)abstract
    • PurposeTumor-stroma ratio (TSR) serves as an independent prognostic factor in colorectal cancer and other solid malignancies. The recent introduction of digital pathology in routine tissue diagnostics holds opportunities for automated TSR analysis. We investigated the potential of computer-aided quantification of intratumoral stroma in rectal cancer whole-slide images.MethodsHistological slides from 129 rectal adenocarcinoma patients were analyzed by two experts who selected a suitable stroma hot-spot and visually assessed TSR. A semi-automatic method based on deep learning was trained to segment all relevant tissue types in rectal cancer histology and subsequently applied to the hot-spots provided by the experts. Patients were assigned to a stroma-high or stroma-low group by both TSR methods (visual and automated). This allowed for prognostic comparison between the two methods in terms of disease-specific and disease-free survival times.ResultsWith stroma-low as baseline, automated TSR was found to be prognostic independent of age, gender, pT-stage, lymph node status, tumor grade, and whether adjuvant therapy was given, both for disease-specific survival (hazard ratio=2.48 (95% confidence interval 1.29-4.78)) and for disease-free survival (hazard ratio=2.05 (95% confidence interval 1.11-3.78)). Visually assessed TSR did not serve as an independent prognostic factor in multivariate analysis.ConclusionsThis work shows that TSR is an independent prognosticator in rectal cancer when assessed automatically in user-provided stroma hot-spots. The deep learning-based technology presented here may be a significant aid to pathologists in routine diagnostics.
  •  
9.
  • Haddad, Tariq Sami, et al. (författare)
  • Improving tumor budding reporting in colorectal cancer: a Delphi consensus study
  • 2021
  • Ingår i: Virchows Archiv. - : SPRINGER. - 0945-6317 .- 1432-2307. ; 479:3, s. 459-469
  • Tidskriftsartikel (refereegranskat)abstract
    • Tumor budding is a long-established independent adverse prognostic marker in colorectal cancer, yet methods for its assessment have varied widely. In an effort to standardize its reporting, a group of experts met in Bern, Switzerland, in 2016 to reach consensus on a single, international, evidence-based method for tumor budding assessment and reporting (International Tumor Budding Consensus Conference [ITBCC]). Tumor budding assessment using the ITBCC criteria has been validated in large cohorts of cancer patients and incorporated into several international colorectal cancer pathology and clinical guidelines. With the wider reporting of tumor budding, new issues have emerged that require further clarification. To better inform researchers and health-care professionals on these issues, an international group of experts in gastrointestinal pathology participated in a modified Delphi process to generate consensus and highlight areas requiring further research. This effort serves to re-affirm the importance of tumor budding in colorectal cancer and support its continued use in routine clinical practice.
  •  
10.
  • Lambregts, Doenja M. J., et al. (författare)
  • Current controversies in TNM for the radiological staging of rectal cancer and how to deal with them : results of a global online survey and multidisciplinary expert consensus
  • 2022
  • Ingår i: European Radiology. - : Springer Nature. - 0938-7994 .- 1432-1084. ; 32:7, s. 4991-5003
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives To identify the main problem areas in the applicability of the current TNM staging system (8(th) ed.) for the radiological staging and reporting of rectal cancer and provide practice recommendations on how to handle them. Methods A global case-based online survey was conducted including 41 image-based rectal cancer cases focusing on various items included in the TNM system. Cases reaching < 80% agreement among survey respondents were identified as problem areas and discussed among an international expert panel, including 5 radiologists, 6 colorectal surgeons, 4 radiation oncologists, and 3 pathologists. Results Three hundred twenty-one respondents (from 32 countries) completed the survey. Sixteen problem areas were identified, related to cT staging in low-rectal cancers, definitions for cT4b and cM1a disease, definitions for mesorectal fascia (MRF) involvement, evaluation of lymph nodes versus tumor deposits, and staging of lateral lymph nodes. The expert panel recommended strategies on how to handle these, including advice on cT-stage categorization in case of involvement of different layers of the anal canal, specifications on which structures to include in the definition of cT4b disease, how to define MRF involvement by the primary tumor and other tumor-bearing structures, how to differentiate and report lymph nodes and tumor deposits on MRI, and how to anatomically localize and stage lateral lymph nodes. Conclusions The recommendations derived from this global survey and expert panel discussion may serve as a practice guide and support tool for radiologists (and other clinicians) involved in the staging of rectal cancer and may contribute to improved consistency in radiological staging and reporting.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy