SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Narita Norio) "

Sökning: WFRF:(Narita Norio)

  • Resultat 1-10 av 35
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Barragán, O., et al. (författare)
  • K2-141 b: A 5-M⊕ super-Earth transiting a K7 V star every 6.7 hours
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 612
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the discovery of K2-141 b (EPIC 246393474 b), an ultra-short-period super-Earth on a 6.7 h orbit transiting an active K7 V star based on data from K2 campaign 12. We confirmed the planet's existence and measured its mass with a series of follow-up observations: seeing-limited Muscat imaging, NESSI high-resolution speckle observations, and FIES and HARPS high-precision radial-velocity monitoring. K2-141 b has a mass of 5.31 ± 0.46 M ⊗ and radius of 1.54 -0.09 +0.10 R ⊗ , yielding a mean density of 8.00 -1.45 +1.83 g cm -3 and suggesting a rocky-iron composition. Models indicate that iron cannot exceed ∼70% of the total mass. With an orbital period of only 6.7 h, K2-141 b is the shortest-period planet known to date with a precisely determined mass.
  •  
2.
  • Barragán, O., et al. (författare)
  • Radial velocity confirmation of K2-100b: A young, highly irradiated, and low-density transiting hot Neptune
  • 2019
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 490:1, s. 698-708
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a detailed analysis of HARPS-N radial velocity observations of K2-100, a young and active star in the Praesepe cluster, which hosts a transiting planet with a period of 1.7 d. We model the activity-induced radial velocity variations of the host star with a multidimensional Gaussian Process framework and detect a planetary signal of 10.6 ± 3.0 m s−1, which matches the transit ephemeris, and translates to a planet mass of 21.8 ± 6.2 M. We perform a suite of validation tests to confirm that our detected signal is genuine. This is the first mass measurement for a transiting planet in a young open cluster. The relatively low density of the planet, 2.04+−006661 g cm−3, implies that K2-100b retains a significant volatile envelope. We estimate that the planet is losing its atmosphere at a rate of 1011–1012 g s−1 due to the high level of radiation it receives from its host star.
  •  
3.
  • Carleo, Ilaria, et al. (författare)
  • The Multiplanet System TOI-421*
  • 2020
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 1538-3881 .- 0004-6256. ; 160:3
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of a warm Neptune and a hot sub-Neptune transiting TOI-421 (BD-14 1137, TIC 94986319), a bright (V = 9.9) G9 dwarf star in a visual binary system observed by the Transiting Exoplanet Survey Satellite (TESS) space mission in Sectors 5 and 6. We performed ground-based follow-up observations-comprised of Las Cumbres Observatory Global Telescope transit photometry, NIRC2 adaptive optics imaging, and FIbre-fed Echelle Spectrograph, CORALIE, High Accuracy Radial velocity Planet Searcher, High Resolution echelle Spectrometer, and Planet Finder Spectrograph high-precision Doppler measurements-and confirmed the planetary nature of the 16 day transiting candidate announced by the TESS team. We discovered an additional radial velocity signal with a period of five days induced by the presence of a second planet in the system, which we also found to transit its host star. We found that the inner mini-Neptune, TOI-421 b, has an orbital period of P-b = 5.19672 +/- 0.00049 days, a mass of M-b = 7.17 +/- 0.66 M-circle plus, and a radius of R-b = R-circle plus, whereas the outer warm Neptune, TOI-421 c, has a period of P-c = 16.06819 +/- 0.00035 days, a mass of M-c = 16.42(-1.04)(+1.06)M(circle plus), a radius of R-c = 5.09(-0.15)(+0.16)R(circle plus), and a density of rho(c) = 0.685(-0.072)(+0.080) cm(-3). With its characteristics, the outer planet (rho(c) = 0.685(-0.0072)(+0.080) cm(-3)) is placed in the intriguing class of the super-puffy mini-Neptunes. TOI-421 b and TOI-421 c are found to be well-suited for atmospheric characterization. Our atmospheric simulations predict significant Ly alpha transit absorption, due to strong hydrogen escape in both planets, as well as the presence of detectable CH4 in the atmosphere of TOI-421 c if equilibrium chemistry is assumed.
  •  
4.
  • Deeg, H., et al. (författare)
  • TOI-1416: A system with a super-Earth planet with a 1.07 d period
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 677
  • Tidskriftsartikel (refereegranskat)abstract
    • TOI-1416 (BD+42 2504, HIP 70705) is a V =10 late G- or early K-type dwarf star. TESS detected transits in its Sectors 16, 23, and 50 with a depth of about 455 ppm and a period of 1.07 days. Radial velocities (RVs) confirm the presence of the transiting planet TOI-1416 b, which has a mass of 3.48 ± 0.47 M• and a radius of 1.62 ± 0.08 R•, implying a slightly sub-Earth density of 4.500.83+0.99 g cm3. The RV data also further indicate a tentative planet, c, with a period of 27.4 or 29.5 days, whose nature cannot be verified due to strong suspicions of contamination by a signal related to the Moon s synodic period of 29.53 days. The nearly ultra-short-period planet TOI-1416 b is a typical representative of a short-period and hot (Teq ≈ 1570 K) super-Earth-like planet. A planet model of an interior of molten magma containing a significant fraction of dissolved water provides a plausible explanation for its composition, and its atmosphere could be suitable for transmission spectroscopy with JWST. The position of TOI-1416 b within the radius-period distribution corroborates the idea that planets with periods of less than one day do not form any special group. It instead implies that ultra-short-period planets belong to a continuous distribution of super-Earth-like planets with periods ranging from the shortest known ones up to ≈ 30 days; their period-radius distribution is delimited against larger radii by the Neptune Desert and by the period-radius valley that separates super-Earths from sub-Neptune planets. In the abundance of small, short-periodic planets, a notable plateau has emerged between periods of 0.6- 1.4 days, which is compatible with the low-eccentricity formation channel. For the Neptune Desert, its lower limits required a revision due to the increasing population of short-period planets; for periods shorter then 2 days, we establish a radius of 1.6 R• and a mass of 0.028 Mjup (corresponding to 8.9 M•) as the desert s lower limits. We also provide corresponding limits to the Neptune Desert against the planets insolation and effective temperatures.
  •  
5.
  • Diaz, Matias R., et al. (författare)
  • TOI-132 b: A short-period planet in the Neptune desert transiting a V=11.3 G-type star
  • 2020
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 493:1, s. 973-985
  • Tidskriftsartikel (refereegranskat)abstract
    • The Neptune desert is a feature seen in the radius-period plane, whereby a notable dearth of short period, Neptune-like planets is found. Here, we report the Transiting Exoplanet Survey Satellite (TESS) discovery of a new short-period planet in the Neptune desert, orbiting the G-type dwarf TYC 8003-1117-1 (TOI-132). TESS photometry shows transit-like dips at the level of similar to 1400 ppm occurring every similar to 2.11 d. High-precision radial velocity follow-up with High Accuracy Radial Velocity Planet Searcher confirmed the planetary nature of the transit signal and provided a semi-amplitude radial velocity variation of 11.38(-0.85)(+0.84) m s(-1), which, when combined with the stellar mass of 0.97 +/- 0.06 M-circle dot, provides a planetary mass of 22.40(-1.92)(+1.90) M-circle plus. Modelling the TESS light curve returns a planet radius of 3.42(-0.14)(+0.13) R-circle plus , and therefore the planet bulk density is found to be 3.08(-0.46)(+0.44) g cm(-3). Planet structure models suggest that the bulk of the planet mass is in the form of a rocky core, with an atmospheric mass fraction of 4.3(-2.3)(+1.2) percent. TOI-132 b is a TESS Level 1 Science Requirement candidate, and therefore priority follow-up will allow the search for additional planets in the system, whilst helping to constrain low-mass planet formation and evolution models, particularly valuable for better understanding of the Neptune desert.
  •  
6.
  • Fridlund, Malcolm, 1952, et al. (författare)
  • The TOI-763 system: Sub-Neptunes orbiting a Sun-like star
  • 2020
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 498:3, s. 4503-4517
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of a planetary system orbiting TOI-763(aka CD-39 7945), a V = 10.2, high proper motion G-type dwarf star that was photometrically monitored by the TESS space mission in Sector 10. We obtain and model the stellar spectrum and find an object slightly smaller than the Sun, and somewhat older, but with a similar metallicity. Two planet candidates were found in the light curve to be transiting the star. Combining TESS transit photometry with HARPS high-precision radial velocity (RV) follow-up measurements confirm the planetary nature of these transit signals. We determine masses, radii, and bulk densities of these two planets. A third planet candidate was discovered serendipitously in the RV data. The inner transiting planet, TOI-763 b, has an orbital period of Pb = 5.6 d, a mass of Mb = 9.8 ± 0.8 M⊕, and a radius of Rb = 2.37 ± 0.10 R⊕. The second transiting planet, TOI-763 c, has an orbital period of Pc = 12.3 d, a mass of Mc = 9.3 ± 1.0 M⊕, and a radius of Rc = 2.87 ± 0.11 R⊕. We find the outermost planet candidate to orbit the star with a period of ∼48 d. If confirmed as a planet, it would have a minimum mass of Md = 9.5 ± 1.6 M⊕. We investigated the TESS light curve in order to search for a mono transit by planet d without success. We discuss the importance and implications of this planetary system in terms of the geometrical arrangements of planets orbiting G-type stars.
  •  
7.
  • Fukui, Akihiko, et al. (författare)
  • TOI-2285b: A 1.7 Earth-radius planet near the habitable zone around a nearby M dwarf
  • 2022
  • Ingår i: Publication of the Astronomical Society of Japan. - : Oxford University Press (OUP). - 2053-051X .- 0004-6264. ; 74:1, s. L1-L8
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of TO1-2285b, a sub-Neptune-sized planet transiting a nearby (42 pc) M dwarf with a period of 27.3 d. We identified the transit signal from the Transiting Exoplanet Survey Satellite photometric data, which we confirmed with ground-based photometric observations using the multiband imagers MuSCAT2 and MuSCAT3. Combining these data with other follow-up observations including high-resolution spectroscopy with the Tillinghast Reflector Echelle Spectrograph, high-resolution imaging with the SPeckle Polarimeter, and radial velocity (RV) measurements with the InfraRed Doppler instrument, we find that the planet has a radius of 1.74 +/- 0.08 R-circle plus, a mass of <19.5 M-circle plus + (95% c.I.), and an insolation flux of 1.54 +/- 0.14 times that of the Earth. Although the planet resides just outside the habitable zone for a rocky planet, if the planet harbors an H2O layer under a hydrogen-rich atmosphere, then liquid water could exist on the surface of the H2O layer depending on the planetary mass and water mass fraction. The bright host star in the near-infrared (K-s = 9.0) makes this planet an excellent target for further RV and atmospheric observations to improve our understanding of the composition, formation, and habitability of sub-Neptune-sized planets.
  •  
8.
  • Gandolfi, Davide, et al. (författare)
  • The Transiting Multi-planet System HD 3167: A 5.7 M ⊕ Super-Earth and an 8.3 M ⊕ Mini-Neptune
  • 2017
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 1538-3881 .- 0004-6256. ; 154:3, s. 123-
  • Tidskriftsartikel (refereegranskat)abstract
    • HD 3167 is a bright (V = 8.9 mag) K0 V star observed by NASA’s K2 space mission during its Campaign 8. It has recently been found to host two small transiting planets, namely, HD 3167b, an ultra-short-period (0.96 days) super-Earth, and HD 3167c, a mini-Neptune on a relatively long-period orbit (29.85 days). Here we present an intensive radial velocity (RV) follow-up of HD 3167 performed with the FIES@NOT, HARPS@ESO-3.6 m, and HARPS-N@TNG spectrographs. We revise the system parameters and determine radii, masses, and densities of the two transiting planets by combining the K2 photometry with our spectroscopic data. With a mass of 5.69 ± 0.44 M⊕, a radius of 1.574 ± 0.054 R⊕, and a mean density of {8.00}-0.98+1.10 g cm^-3, HD 3167b joins the small group of ultra-short-period planets known to have rocky terrestrial compositions. HD 3167c has a mass of 8.33-1.85+1.79 M⊕ and a radius of 2.74}-0.100+0.106 R⊕, yielding a mean density of 2.21-0.53+0.56 g cm^-3, indicative of a planet with a composition comprising a solid core surrounded by a thick atmospheric envelope. The rather large pressure scale height (∼350 km) and the brightness of the host star make HD 3167c an ideal target for atmospheric characterization via transmission spectroscopy across a broad range of wavelengths. We found evidence of additional signals in the RV measurements but the currently available data set does not allow us to draw any firm conclusions on the origin of the observed variation.
  •  
9.
  • Harakawa, Hiroki, et al. (författare)
  • A super-Earth orbiting near the inner edge of the habitable zone around the M4.5 dwarf Ross 508
  • 2022
  • Ingår i: Publications of the Astronomical Society of Japan. - : Oxford University Press (OUP). - 0004-6264 .- 2053-051X. ; 74:4, s. 904-922
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the near-infrared radial velocity (RV) discovery of a super-Earth planet on a 10.77 d orbit around the M4.5 dwarf Ross 508 (Jmag = 9.1). Using precision RVs from the Subaru Telescope IRD (InfraRed Doppler) instrument, we derive a semi-amplitude of 3.92ms−1⁠, corresponding to a planet with a minimum mass msini=4.00M⊕⁠. We find no evidence of significant signals at the detected period in spectroscopic stellar activity indicators or MEarth photometry. The planet, Ross 508 b, has a semi-major axis of 0.05366au. This gives an orbit-averaged insolation of ≈1.4 times the Earth’s value, placing Ross 508 b near the inner edge of its star’s habitable zone. We have explored the possibility that the planet has a high eccentricity and its host is accompanied by an additional unconfirmed companion on a wide orbit. Our discovery demonstrates that the near-infrared RV search can play a crucial role in finding a low-mass planet around cool M dwarfs like Ross 508.
  •  
10.
  • Hatzes, A., et al. (författare)
  • A Radial Velocity Study of the Planetary System of π Mensae: Improved Planet Parameters for pi Mensae c and a Third Planet on a 125 Day Orbit
  • 2022
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 1538-3881 .- 0004-6256. ; 163:5
  • Tidskriftsartikel (refereegranskat)abstract
    • π Men hosts a transiting planet detected by the Transiting Exoplanet Survey Satellite space mission and an outer planet in a 5.7 yr orbit discovered by radial velocity (RV) surveys. We studied this system using new RV measurements taken with the HARPS spectrograph on ESO's 3.6 m telescope, as well as archival data. We constrain the stellar RV semiamplitude due to the transiting planet, π Men c, as K c = 1.21 ± 0.12 m s-1, resulting in a planet mass of M c = 3.63 ± 0.38 M. A planet radius of R c = 2.145 ± 0.015 R yields a bulk density of ρ c = 2.03 ± 0.22 g cm-3. The precisely determined density of this planet and the brightness of the host star make π Men c an excellent laboratory for internal structure and atmospheric characterization studies. Our HARPS RV measurements also reveal compelling evidence for a third body, π Men d, with a minimum mass M d sin i d = 13.38 ± 1.35 M orbiting with a period of P orb,d = 125 days on an eccentric orbit (e d = 0.22). A simple dynamical analysis indicates that the orbit of π Men d is stable on timescales of at least 20 Myr. Given the mutual inclination between the outer gaseous giant and the inner rocky planet and the presence of a third body at 125 days, π Men is an important planetary system for dynamical and formation studies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 35

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy