SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nath Sangeeta) "

Sökning: WFRF:(Nath Sangeeta)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Agholme, Lotta, et al. (författare)
  • Proteasome Inhibition Induces Stress Kinase Dependent Transport Deficits – Implications for Alzheimer’s Disease
  • 2014
  • Ingår i: Molecular and Cellular Neuroscience. - : Elsevier. - 1044-7431 .- 1095-9327. ; 58, s. 29-39
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer’s disease (AD) is characterized by accumulation of two misfolded and aggregated proteins, β-amyloid and hyperphosphorylated tau. Both cellular systems responsible for clearance of misfolded and aggregated proteins, the lysosomal and the proteasomal, have been shown to be malfunctioning in the aged brain and more so in AD patients. This malfunction could be the cause of β-amyloid and tau accumulation, eventually aggregating in plaques and tangles. We have investigated how decreased proteasome activity affects AD related pathophysiological changes of microtubule transport and stability, as well as tau phosphorylation. To do this, we used our recently developed neuronal model where human SH-SY5Y cells obtain neuronal morphology and function through differentiation. We found that exposure to low doses of the proteasome inhibitor MG-115 caused disturbed neuritic transport, together with microtubule destabilization and tau phosphorylation. Furthermore, reduced proteasome activity activated several kinases implicated in AD pathology, including JNK, c-Jun and ERK 1/2. Restoration of the microtubule transport was achieved by inhibiting ERK 1/2 activation, and simultaneous inhibition of both ERK 1/2 and c-Jun reversed the proteasome inhibition-induced tau phosphorylation. Taken together, this study suggests that a decrease in proteasome activity can, through activation of c-Jun and ERK 1/2, result in several events contributing to AD pathology. Restoring proteasome function or inhibiting ERK 1/2 and c-Jun could therefore be used as novel treatments against AD.
  •  
2.
  • Dilna, Aysha, et al. (författare)
  • Amyloid-beta induced membrane damage instigates tunneling nanotube-like conduits by p21-activated kinase dependent actin remodulation
  • 2021
  • Ingår i: Biochimica et Biophysica Acta - Molecular Basis of Disease. - : ELSEVIER. - 0925-4439 .- 1879-260X. ; 1867:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimers disease (AD) pathology progresses gradually via anatomically connected brain regions. Direct transfer of amyloid-beta(1-42) oligomers (oA beta) between connected neurons has been shown, however, the mechanism is not fully revealed. We observed formation of oA beta induced tunneling nanotubes (TNTs)-like nanoscaled f-actin containing membrane conduits, in differentially differentiated SH-SY5Y neuronal models. Time-lapse images showed that oA beta propagate from one cell to another via TNT-like structures. Preceding the formation of TNT-like conduits, we detected oA beta_induced plasma membrane (PM) damage and calcium-dependent repair through lysosomal-exocytosis, followed by massive endocytosis to re-establish the PM. Massive endocytosis was monitored by an influx of the membrane-staining dye TMA-DPH and PM damage was quantified by propidium iodide influx in the absence of Ca2+. The massive endocytosis eventually caused accumulation of internalized oA beta in Lamp1 positive multivesicular bodies/lysosomes via the actin cytoskeleton remodulating p21-activated kinase1 (PAK1) dependent endocytic pathway. Three-dimensional quantitative confocal imaging, structured illumination superresolution microscopy, and flowcytometry quantifications revealed that oA beta induces activation of phospho-PAK1, which modulates the formation of long stretched f-actin extensions between cells. Moreover, the formation of TNT-like conduits was inhibited by preventing PAK1-dependent internalization of oA beta using the small-molecule inhibitor IPA-3, a highly selective cell-permeable auto-regulatory inhibitor of PAK1. The present study reveals that the TNT-like conduits are probably instigated as a consequence of oA beta induced PM damage and repair process, followed by PAK1 dependent endocytosis and actin remodeling, probably to maintain cell surface expansion and/or membrane tension in equilibrium.
  •  
3.
  • Domert, Jakob, et al. (författare)
  • Spreading of Amyloid-β Peptides via Neuritic Cell-to-cell Transfer Is Dependent on Insufficient Cellular Clearance
  • 2014
  • Ingår i: Neurobiology of Disease. - : Elsevier. - 0969-9961 .- 1095-953X. ; 65, s. 82-92
  • Tidskriftsartikel (refereegranskat)abstract
    • The spreading of pathology through neuronal pathways is likely to be the cause of the progressive cognitive loss observed in Alzheimer's disease (AD) and other neurodegenerative diseases. We have recently shown the propagation of AD pathology via cell-to-cell transfer of oligomeric amyloid beta (Aβ) residues 1-42 (oAβ1-42) using our donor-acceptor 3-D co-culture model. We now show that different Aβ-isoforms (fluorescently labeled 1-42, 3(pE)-40, 1-40 and 11-42 oligomers) can transfer from one cell to another. Thus, transfer is not restricted to a specific Aβ-isoform. Although different Aβ isoforms can transfer, differences in the capacity to clear and/or degrade these aggregated isoforms result in vast differences in the net amounts ending up in the receiving cells and the net remaining Aβ can cause seeding and pathology in the receiving cells. This insufficient clearance and/or degradation by cells creates sizable intracellular accumulations of the aggregation-prone Aβ1-42 isoform, which further promotes cell-to-cell transfer; thus, oAβ1-42 is a potentially toxic isoform. Furthermore, cell-to-cell transfer is shown to be an early event that is seemingly independent of later appearances of cellular toxicity. This phenomenon could explain how seeds for the AD pathology could pass on to new brain areas and gradually induce AD pathology, even before the first cell starts to deteriorate, and how cell-to-cell transfer can act together with the factors that influence cellular clearance and/or degradation in the development of AD.
  •  
4.
  • Eriksson, Ida, et al. (författare)
  • Impact of high cholesterol in a Parkinsons disease model: Prevention of lysosomal leakage versus stimulation of alpha-synuclein aggregation
  • 2017
  • Ingår i: European Journal of Cell Biology. - : ELSEVIER GMBH, URBAN & FISCHER VERLAG. - 0171-9335 .- 1618-1298. ; 96:2, s. 99-109
  • Tidskriftsartikel (refereegranskat)abstract
    • Parkinsons disease is characterized by accumulation of intraneuronal cytoplasmic inclusions, Lewy bodies, which mainly consist of aggregated alpha-synuclein. Controversies exist as to whether high blood cholesterol is a risk factor for the development of the disease and whether statin treatment could have a protective effect. Using a model system of BE(2)-M17 neuroblastoma cells treated with the neurotoxin 1-methyl-4-phenylpyridinium (MPP+), we found that MPP+-induced cell death was accompanied by cholesterol accumulation in a lysosomal-like pattern in pre-apoptotic cells. To study the effects of lysosomal cholesterol accumulation, we increased lysosomal cholesterol through pre-treatment with U18666A and found delayed leakage of lysosomal contents into the cytosol, which reduced cell death. This suggests that increased lysosomal cholesterol is a stress response mechanism to protect lysosomal membrane integrity in response to early apoptotic stress. However, high cholesterol also stimulated the accumulation of alpha-synuclein. Treatment with the cholesterol-lowering drug lovastatin reduced MPP+-induced cell death by inhibiting the production of reactive oxygen species, but did not prevent lysosomal cholesterol increase nor affect alpha-synuclein accumulation. Our study indicates a dual role of high cholesterol in Parkinsons disease, in which it acts both as a protector against lysosomal membrane permeabilization and as a stimulator of alpha-synuclein accumulation. (C) 2017 Elsevier GmbH. All rights reserved.
  •  
5.
  • Hallbeck, Martin, et al. (författare)
  • Neuron-to-Neuron Transmission of Neurodegenerative Pathology
  • 2013
  • Ingår i: The Neuroscientist. - : Sage Publications. - 1073-8584 .- 1089-4098. ; 19:6, s. 560-566
  • Forskningsöversikt (refereegranskat)abstract
    • One of the hallmarks of neurodegenerative dementia diseases is the progressive loss of mental functions and the ability to manage activities of daily life. This progression is caused by the spread of the disease to more and more brain areas via anatomical connections. The pathophysiological process responsible for this spread of disease has long been sought after. There has been an increased understanding that the driving force of these neurodegenerative diseases could be the small, soluble intraneuronal accumulations of neurodegenerative proteins rather than the large, extracellular accumulations. Recently we have shown that the mechanism of spread of Alzheimer's disease most likely depends on the neuron-to-neuron spread of such soluble intraneuronal accumulations of -amyloid through neuritic connections. Similar transmissions have been shown for several other neurodegenerative proteins but little is known about the cellular mechanisms and about any potential strategies that might stop this spread. Resolving these questions requires good cellular models. We have established a unique model of synaptic transmission between human neuronal-like cells, something that has previously been difficult to target. This opens the possibility of developing potential inhibitors of progression of these devastating diseases.
  •  
6.
  • Helmfors, Linda, et al. (författare)
  • A protective role of lysozyme in Alzheimer disease
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Alzheimer disease (AD) is a devastating neurodegenerative disorder where extracellular plaques composed of amyloid β (Aβ) peptides and neuroinflammation are some of the main hallmarks of the disease. Activated microglial cells, which are the resident macrophages in the central nervous system, are suggested to trigger the inflammation response in AD. To discover neuroinflammation biomarkers would be important to reveal the pathological mechanisms of AD and develop therapies that target inflammation mediators. Lysozyme is part of the innate immune system and is secreted from macrophages during various inflammation conditions. However, the involvement of lysozyme in AD pathology has not been explored previously. We have discovered that lysozyme is up-regulated in cerebrospinal fluid from AD patients. Cells exposed to Aβ increased the expression of lysozyme indicating that Aβ might be responsible for the upregulation of lysozyme detected in cerebrospinal fluid. In vitro studies revealed that lysozyme binds to monomeric Aβ1-42 and alters the aggregation pathway counteracting formation of toxic Aβ species. In a newly developed Drosophila model, co-expression of lysozyme with Aβ in brain neurons reduced the formation of insoluble Aβ species, prolonged the survival and improved the activity of the double transgenic flies compared to flies only expressing Aβ. Our findings identify lysozyme as a modulator of Aβ aggregation and toxicity and our discoveries has the potential to be used for development of new treatment strategies and to use lysozyme as a biomarker for AD.
  •  
7.
  • Helmfors, Linda, et al. (författare)
  • Protective properties of lysozyme on β-amyloid pathology : implications for Alzheimer disease
  • 2015
  • Ingår i: Neurobiology of Disease. - : Elsevier. - 0969-9961 .- 1095-953X. ; 83, s. 122-133
  • Tidskriftsartikel (refereegranskat)abstract
    • The hallmarks of Alzheimer disease are amyloid-β plaques and neurofibrillary tangles accompanied by signs of neuroinflammation. Lysozyme is a major player in the innate immune system and has recently been shown to prevent the aggregation of amyloid-β1-40 in vitro. In this study we found that patients with Alzheimer disease have increased lysozyme levels in the cerebrospinal fluid and lysozyme co-localized with amyloid-β in plaques. In Drosophila neuronal co-expression of lysozyme and amyloid-β1-42 reduced the formation of soluble and insoluble amyloid-β species, prolonged survival and improved the activity of amyloid-β1-42 transgenic flies. This suggests that lysozyme levels rise in Alzheimer disease as a compensatory response to amyloid-β increases and aggregation. In support of this, in vitro aggregation assays revealed that lysozyme associates with amyloid-β1-42 and alters its aggregation pathway to counteract the formation of toxic amyloid-β species. Overall, these studies establish a protective role for lysozyme against amyloid-β associated toxicities and identify increased lysozyme in patients with Alzheimer disease. Therefore, lysozyme has potential as a new biomarker as well as a therapeutic target for Alzheimer disease.
  •  
8.
  • Nath, Sangeeta, et al. (författare)
  • Spreading of Neurodegenerative Pathology via Neuron-to-Neuron Transmission of beta-Amyloid
  • 2012
  • Ingår i: Journal of Neuroscience. - : SOC NEUROSCIENCE. - 0270-6474 .- 1529-2401. ; 32:26, s. 8767-8777
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimers disease (AD) is the major cause of dementia. During the development of AD, neurofibrillary tangles progress in a fixed pattern, starting in the transentorhinal cortex followed by the hippocampus and cortical areas. In contrast, the deposition of beta-amyloid (A beta) plaques, which are the other histological hallmark of AD, does not follow the same strict spatiotemporal pattern, and it correlates poorly with cognitive decline. Instead, soluble A beta oligomers have received increasing attention as probable inducers of pathogenesis. In this study, we use microinjections into electrophysiologically defined primary hippocampal rat neurons to demonstrate the direct neuron-to-neuron transfer of soluble oligomeric A beta. Additional studies conducted in a human donor-acceptor cell model show that this A beta transfer depends on direct cellular connections. As the transferred oligomers accumulate, acceptor cells gradually show beading of tubulin, a sign of neurite damage, and gradual endosomal leakage, a sign of cytotoxicity. These observations support that intracellular A beta oligomers play a role in neurodegeneration, and they explain the manner in which A beta can drive disease progression, even if the extracellular plaque load is poorly correlated with the degree of cognitive decline. Understanding this phenomenon sheds light on the pathophysiological mechanism of AD progression. Additional elucidation will help uncover the detailed mechanisms responsible for the manner in which AD progresses via anatomical connections and will facilitate the development of new strategies for stopping the progression of this incapacitating disease.
  •  
9.
  • Sandin, Linnea, et al. (författare)
  • Beneficial effects of increased lysozyme levels in Alzheimer’s disease modelled in Drosophila melanogaster
  • 2016
  • Ingår i: The FEBS Journal. - : John Wiley & Sons. - 1742-464X .- 1742-4658. ; 283:19, s. 3508-3522
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic polymorphisms of immune genes that associate with higher risk to develop Alzheimer’s disease (AD) have led to an increased research interest on the involvement of the immune system in AD pathogenesis. A link between amyloid pathology and immune gene expression was suggested in a genome-wide gene expression study of transgenic amyloid mouse models. In this study, the gene expression of lysozyme, a major player in the innate immune system, was found to be increased in a comparable pattern as the amyloid pathology developed in transgenic mouse models of AD. A similar pattern was seen at protein levels of lysozyme in human AD brain and CSF, but this lysozyme pattern was not seen in a tau transgenic mouse model. Lysozyme was demonstrated to be beneficial for different Drosophila melanogaster models of AD. In flies that expressed Aβ1-42 or AβPP together with BACE1 in the eyes, the rough eye phenotype indicative of toxicity was completely rescued by coexpression of lysozyme. In Drosophila flies bearing the Aβ1-42 variant with the Arctic gene mutation, lysozyme increased the fly survival and decreased locomotor dysfunction dose dependently. An interaction between lysozyme and Aβ1-42 in the Drosophila eye was discovered. We propose that the increased levels of lysozyme, seen in mouse models of AD and in human AD cases, were triggered by Aβ1-42 and caused a beneficial effect by binding of lysozyme to toxic species of Aβ1-42, which prevented these from exerting their toxic effects. These results emphasize the possibility of lysozyme as biomarker and therapeutic target for AD.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy