SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Needham J) "

Sökning: WFRF:(Needham J)

  • Resultat 1-10 av 31
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Needham, E. J., et al. (författare)
  • Brain injury in COVID-19 is associated with dysregulated innate and adaptive immune responses
  • 2022
  • Ingår i: Brain. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 145:11, s. 4097-4107
  • Tidskriftsartikel (refereegranskat)abstract
    • COVID-19 is associated with neurological complications including stroke, delirium and encephalitis. Furthermore, a post-viral syndrome dominated by neuropsychiatric symptoms is common, and is seemingly unrelated to COVID-19 severity. The true frequency and underlying mechanisms of neurological injury are unknown, but exaggerated host inflammatory responses appear to be a key driver of COVID-19 severity. We investigated the dynamics of, and relationship between, serum markers of brain injury [neurofilament light (NfL), glial fibrillary acidic protein (GFAP) and total tau] and markers of dysregulated host response (autoantibody production and cytokine profiles) in 175 patients admitted with COVID-19 and 45 patients with influenza. During hospitalization, sera from patients with COVID-19 demonstrated elevations of NfL and GFAP in a severity-dependent manner, with evidence of ongoing active brain injury at follow-up 4 months later. These biomarkers were associated with elevations of pro-inflammatory cytokines and the presence of autoantibodies to a large number of different antigens. Autoantibodies were commonly seen against lung surfactant proteins but also brain proteins such as myelin associated glycoprotein. Commensurate findings were seen in the influenza cohort. A distinct process characterized by elevation of serum total tau was seen in patients at follow-up, which appeared to be independent of initial disease severity and was not associated with dysregulated immune responses unlike NfL and GFAP. These results demonstrate that brain injury is a common consequence of both COVID-19 and influenza, and is therefore likely to be a feature of severe viral infection more broadly. The brain injury occurs in the context of dysregulation of both innate and adaptive immune responses, with no single pathogenic mechanism clearly responsible. Needham et al. reveal elevations in blood biomarkers of brain injury in patients hospitalised with COVID-19. The changes, which were severity-dependent, were associated with dysregulated immune responses including increases in pro-inflammatory cytokines and autoantibodies. Ongoing active brain injury could still be seen months after infection.
  •  
4.
  • Hop, Paul J., et al. (författare)
  • Genome-wide study of DNA methylation shows alterations in metabolic, inflammatory, and cholesterol pathways in ALS
  • 2022
  • Ingår i: Science Translational Medicine. - : American Association for the Advancement of Science. - 1946-6234 .- 1946-6242. ; 14:633
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with an estimated heritability between 40 and 50%. DNA methylation patterns can serve as proxies of (past) exposures and disease progression, as well as providing a potential mechanism that mediates genetic or environmental risk. Here, we present a blood-based epigenome-wide association study meta-analysis in 9706 samples passing stringent quality control (6763 patients, 2943 controls). We identified a total of 45 differentially methylated positions (DMPs) annotated to 42 genes, which are enriched for pathways and traits related to metabolism, cholesterol biosynthesis, and immunity. We then tested 39 DNA methylation-based proxies of putative ALS risk factors and found that high-density lipoprotein cholesterol, body mass index, white blood cell proportions, and alcohol intake were independently associated with ALS. Integration of these results with our latest genome-wide association study showed that cholesterol biosynthesis was potentially causally related to ALS. Last, DNA methylation at several DMPs and blood cell proportion estimates derived from DNA methylation data were associated with survival rate in patients, suggesting that they might represent indicators of underlying disease processes potentially amenable to therapeutic interventions.
  •  
5.
  • Sen, P, et al. (författare)
  • Vaccine hesitancy decreases in rheumatic diseases, long-term concerns remain in myositis: a comparative analysis of the COVAD surveys
  • 2023
  • Ingår i: Rheumatology (Oxford, England). - : Oxford University Press (OUP). - 1462-0332 .- 1462-0324. ; 62:10, s. 3291-3301
  • Tidskriftsartikel (refereegranskat)abstract
    • ObjectiveCOVID-19 vaccines have a favorable safety profile in patients with autoimmune rheumatic diseases (AIRDs) such as idiopathic inflammatory myopathies (IIMs); however, hesitancy continues to persist among these patients. Therefore, we studied the prevalence, predictors and reasons for hesitancy in patients with IIMs, other AIRDs, non-rheumatic autoimmune diseases (nrAIDs) and healthy controls (HCs), using data from the two international COVID-19 Vaccination in Autoimmune Diseases (COVAD) e-surveys.MethodsThe first and second COVAD patient self-reported e-surveys were circulated from March to December 2021, and February to June 2022 (ongoing). We collected data on demographics, comorbidities, COVID-19 infection and vaccination history, reasons for hesitancy, and patient reported outcomes. Predictors of hesitancy were analysed using regression models in different groups.ResultsWe analysed data from 18 882 (COVAD-1) and 7666 (COVAD-2) respondents. Reassuringly, hesitancy decreased from 2021 (16.5%) to 2022 (5.1%) (OR: 0.26; 95% CI: 0.24, 0.30, P < 0.001). However, concerns/fear over long-term safety had increased (OR: 3.6; 95% CI: 2.9, 4.6, P < 0.01). We noted with concern greater skepticism over vaccine science among patients with IIMs than AIRDs (OR: 1.8; 95% CI: 1.08, 3.2, P = 0.023) and HCs (OR: 4; 95% CI: 1.9, 8.1, P < 0.001), as well as more long-term safety concerns/fear (IIMs vs AIRDs – OR: 1.9; 95% CI: 1.2, 2.9, P = 0.001; IIMs vs HCs – OR: 5.4 95% CI: 3, 9.6, P < 0.001). Caucasians [OR 4.2 (1.7–10.3)] were likely to be more hesitant, while those with better PROMIS physical health score were less hesitant [OR 0.9 (0.8–0.97)].ConclusionVaccine hesitancy has decreased from 2021 to 2022, long-term safety concerns remain among patients with IIMs, particularly in Caucasians and those with poor physical function.
  •  
6.
  • Zhao, J. H., et al. (författare)
  • Genetics of circulating inflammatory proteins identifies drivers of immune-mediated disease risk and therapeutic targets
  • 2023
  • Ingår i: Nature Immunology. - : Springer Nature. - 1529-2908 .- 1529-2916. ; 24:9, s. 1540-1551
  • Tidskriftsartikel (refereegranskat)abstract
    • Circulating proteins have important functions in inflammation and a broad range of diseases. To identify genetic influences on inflammation-related proteins, we conducted a genome-wide protein quantitative trait locus (pQTL) study of 91 plasma proteins measured using the Olink Target platform in 14,824 participants. We identified 180 pQTLs (59 cis, 121 trans). Integration of pQTL data with eQTL and disease genome-wide association studies provided insight into pathogenesis, implicating lymphotoxin-alpha in multiple sclerosis. Using Mendelian randomization (MR) to assess causality in disease etiology, we identified both shared and distinct effects of specific proteins across immune-mediated diseases, including directionally discordant effects of CD40 on risk of rheumatoid arthritis versus multiple sclerosis and inflammatory bowel disease. MR implicated CXCL5 in the etiology of ulcerative colitis (UC) and we show elevated gut CXCL5 transcript expression in patients with UC. These results identify targets of existing drugs and provide a powerful resource to facilitate future drug target prioritization. Here the authors identify genetic effectors of the level of inflammation-related plasma proteins and use Mendelian randomization to identify proteins that contribute to immune-mediated disease risk.
  •  
7.
  •  
8.
  • Needham, Edward J, et al. (författare)
  • Complex Autoantibody Responses Occur following Moderate to Severe Traumatic Brain Injury.
  • 2021
  • Ingår i: Journal of immunology. - : The American Association of Immunologists. - 1550-6606 .- 0022-1767. ; 207:1, s. 90-100
  • Tidskriftsartikel (refereegranskat)abstract
    • Most of the variation in outcome following severe traumatic brain injury (TBI) remains unexplained by currently recognized prognostic factors. Neuroinflammation may account for some of this difference. We hypothesized that TBI generated variable autoantibody responses between individuals that would contribute to outcome. We developed a custom protein microarray to detect autoantibodies to both CNS and systemic Ags in serum from the acute-phase (the first 7 d), late (6-12 mo), and long-term (6-13 y) intervals after TBI in human patients. We identified two distinct patterns of immune response to TBI. The first was a broad response to the majority of Ags tested, predominantly IgM mediated in the acute phase, then IgG dominant at late and long-term time points. The second was responses to specific Ags, most frequently myelin-associated glycopeptide (MAG), which persisted for several months post-TBI but then subsequently resolved. Exploratory analyses suggested that patients with a greater acute IgM response experienced worse outcomes than predicted from current known risk factors, suggesting a direct or indirect role in worsening outcome. Furthermore, late persistence of anti-MAG IgM autoantibodies correlated with raised serum neurofilament light concentrations at these time points, suggesting an association with ongoing neurodegeneration over the first year postinjury. Our results show that autoantibody production occurs in some individuals following TBI, can persist for many years, and is associated with worse patient outcome. The complexity of responses means that conventional approaches based on measuring responses to single antigenic targets may be misleading.
  •  
9.
  •  
10.
  • van Rheenen, W, et al. (författare)
  • Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology
  • 2021
  • Ingår i: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 53:12, s. 1636-
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a lifetime risk of one in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry genome-wide association study (GWAS) including 29,612 patients with ALS and 122,656 controls, which identified 15 risk loci. When combined with 8,953 individuals with whole-genome sequencing (6,538 patients, 2,415 controls) and a large cortex-derived expression quantitative trait locus (eQTL) dataset (MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, short tandem repeats or regulatory effects. ALS-associated risk loci were shared with multiple traits within the neurodegenerative spectrum but with distinct enrichment patterns across brain regions and cell types. Of the environmental and lifestyle risk factors obtained from the literature, Mendelian randomization analyses indicated a causal role for high cholesterol levels. The combination of all ALS-associated signals reveals a role for perturbations in vesicle-mediated transport and autophagy and provides evidence for cell-autonomous disease initiation in glutamatergic neurons.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 31

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy