SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nishimoto Y) "

Sökning: WFRF:(Nishimoto Y)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Han, Y., et al. (författare)
  • Finite element analysis of kinematic behaviour and injuries to pedestrians in vehicle collisions
  • 2012
  • Ingår i: International Journal of Crashworthiness. - : Informa UK Limited. - 1358-8265 .- 1754-2111. ; 17:2, s. 141-152
  • Tidskriftsartikel (refereegranskat)abstract
    • In vehicle-to-pedestrian collisions, the characteristics of a vehicle's frontal shape and structural stiffness have a significant influence on the kinematics and injury risk of the pedestrian's body regions. In the present study, the kinematic behaviour and injury risk of the pedestrians were investigated in collisions against vehicles with different frontal shapes. The THUMS (Total HUman Model for Safety) pedestrian finite element (FE) model was used and impacted by three different types of vehicle FE models (passenger car, one-box vehicle and sport-utility vehicle [SUV]) representing the different frontal shapes at 40 km/h. In the simulation with the passenger car-to-pedestrian impact, the pedestrian wrapped around the hood, and the resulting bending moment of the lower extremity and head injury criterion (HIC) value were high. In the simulation with the one-box vehicle-to-pedestrian impact, the pedestrian's upper torso was directly hit by the front end of the vehicle. The pelvis and chest had contact with the stiff vehicle frontal panel, resulting in a high stress being observed on the rib cage. In the simulation with the SUV-to-pedestrian impact, the force of the pelvis was high due to the contact with the vehicle hood's leading edge. The results indicated that the frontal shape of the vehicle has a large effect on the pedestrian kinematic behaviour, including the impact velocity of the pelvis, chest, and head against the vehicle. Moreover, the stiffness of the vehicle structure can affect the deformation mode of the human body segments, such as the lower extremities and the rib cage. The injury predictions for each body region from the FE analyses agreed with observations from pedestrian accidents involving a car, one-box vehicle and SUV, respectively.
  •  
4.
  •  
5.
  •  
6.
  • Lundberg, Marcus, 1974-, et al. (författare)
  • Delocalization errors in a hubbard-€like model : Consequences for density-€functional tight-€binding calculations of molecular systems
  • 2012
  • Ingår i: International Journal of Quantum Chemistry. - : Wiley. - 0020-7608 .- 1097-461X. ; 112:6, s. 1701-1711
  • Tidskriftsartikel (refereegranskat)abstract
    • It has previously been shown that self-consistent-charge density-functional tight-binding (SCC-DFTB) suffers from a self-interaction error that leads to artificial stabilization of delocalized states. The effects of the error are similar to those appearing for many density functionals. In SCC-DFTB, the delocalization error is inherently related to the use of a Hubbard-like term to describe on-site charge interactions. The mathematical simplicity of this Hubbard-like term makes it easy to estimate if a complex system is subject to artificial stabilization of delocalized states and to quantitatively predict the delocalization error in the system energy at large fragment separation. The error is directly proportional to the on-site charge interaction term but decreases as the fragments become more asymmetric. The difference in orbital energies required to eliminate the delocalization error becomes equal to the Hubbard-like parameter of the fragment with the highest electron affinity. However, in most cases, the localized state will be favored by spin polarization, fragment repulsion, solvent effects, and large reorganization energies, in analogy to density functional theory, from which SCC-DFTB is derived. The presented analysis gives an early indication whether the standard approach is suitable, or if a different method is required to correct the delocalization error. In addition to cationic dimers, we discuss the effects of the delocalization error for asymmetric systems, bond dissociation of neutral molecules, and the description of mixed valence transition metal systems, exemplified by the enzyme cytochrome oxidase.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy