SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nitsche Frank O.) "

Sökning: WFRF:(Nitsche Frank O.)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bentley, Michael J., et al. (författare)
  • A community-based geological reconstruction of Antarctic Ice Sheet deglaciation since the Last Glacial Maximum
  • 2014
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 100, s. 1-9
  • Tidskriftsartikel (refereegranskat)abstract
    • A robust understanding of Antarctic Ice Sheet deglacial history since the Last Glacial Maximum is important in order to constrain ice sheet and glacial-isostatic adjustment models, and to explore the forcing mechanisms responsible for ice sheet retreat. Such understanding can be derived from a broad range of geological and glaciological datasets and recent decades have seen an upsurge in such data gathering around the continent and Sub-Antarctic islands. Here, we report a new synthesis of those datasets, based on an accompanying series of reviews of the geological data, organised by sector. We present a series of timeslice maps for 20 ka, 15 ka, 10 ka and 5 ka, including grounding line position and ice sheet thickness changes, along with a clear assessment of levels of confidence. The reconstruction shows that the Antarctic Ice sheet did not everywhere reach the continental shelf edge at its maximum, that initial retreat was asynchronous, and that the spatial pattern of deglaciation was highly variable, particularly on the inner shelf. The deglacial reconstruction is consistent with a moderate overall excess ice volume and with a relatively small Antarctic contribution to meltwater pulse la. We discuss key areas of uncertainty both around the continent and by time interval, and we highlight potential priorities for future work. The synthesis is intended to be a resource for the modelling and glacial geological community.
  •  
2.
  • Larter, Robert D., et al. (författare)
  • Reconstruction of changes in the Amundsen Sea and BellingshausenSea sector of the West Antarctic Ice Sheet since the Last GlacialMaximum
  • 2013
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 100, s. 56-86
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Marine and terrestrial geological and marine geophysical data that constrain deglaciation since the LastGlacial Maximum (LGM) of the sector of theWest Antarctic Ice Sheet (WAIS) draining into the AmundsenSea and Bellingshausen Sea have been collated and used as the basis for a set of time-slice reconstructions.The drainage basins in these sectors constitute a little more than one-quarter of the area ofthe WAIS, but account for about one-third of its surface accumulation. Their mass balance is becomingincreasingly negative, and therefore they account for an even larger fraction of currentWAIS discharge. Ifall of the ice in these sectors of the WAIS were discharged to the ocean, global sea level would rise byca 2 m.There is compelling evidence that grounding lines of palaeo-ice streams were at, or close to, thecontinental shelf edge along the Amundsen Sea and Bellingshausen Sea margins during the last glacialperiod. However, the few cosmogenic surface exposure ages and ice core data available from the interiorofWest Antarctica indicate that ice surface elevations there have changed little since the LGM. In the fewareas from which cosmogenic surface exposure ages have been determined near the margin of the icesheet, they generally suggest that there has been a gradual decrease in ice surface elevation since pre-Holocene times. Radiocarbon dates from glacimarine and the earliest seasonally open marine sedimentsin continental shelf cores that have been interpreted as providing approximate ages for post-LGMgrounding-line retreat indicate different trajectories of palaeo-ice stream recession in the Amundsen Seaand Bellingshausen Sea embayments. The areas were probably subject to similar oceanic, atmosphericand eustatic forcing, in which case the differences are probably largely a consequence of how topographicand geological factors have affected ice flow, and of topographic influences on snow accumulation andwarm water inflow across the continental shelf.Pauses in ice retreat are recorded where there are “bottle necks” in cross-shelf troughs in both embayments.The highest retreat rates presently constrained by radiocarbon dates from sediment cores arefound where the grounding line retreated across deep basins on the inner shelf in the Amundsen Sea,which is consistent with the marine ice sheet instability hypothesis. Deglacial ages from the Amundsen Sea Embayment (ASE) and Eltanin Bay (southern Bellingshausen Sea) indicate that the ice sheet hadalready retreated close to its modern limits by early Holocene time, which suggests that the rapid icethinning, flow acceleration, and grounding line retreat observed in this sector over recent decades areunusual in the context of the past 10,000 years.
  •  
3.
  •  
4.
  • Arndt, Jan Erik, et al. (författare)
  • The International Bathymetric Chart of the Southern Ocean (IBCSO) Version 1.0-A new bathymetric compilation covering circum-Antarctic waters
  • 2013
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 40:12, s. 3111-3117
  • Tidskriftsartikel (refereegranskat)abstract
    • The International Bathymetric Chart of the Southern Ocean (IBCSO) Version 1.0 is a new digital bathymetric model (DBM) portraying the seafloor of the circum-Antarctic waters south of 60 degrees S. IBCSO is a regional mapping project of the General Bathymetric Chart of the Oceans (GEBCO). The IBCSO Version 1.0 DBM has been compiled from all available bathymetric data collectively gathered by more than 30 institutions from 15 countries. These data include multibeam and single-beam echo soundings, digitized depths from nautical charts, regional bathymetric gridded compilations, and predicted bathymetry. Specific gridding techniques were applied to compile the DBM from the bathymetric data of different origin, spatial distribution, resolution, and quality. The IBCSO Version 1.0 DBM has a resolution of 500 x 500 m, based on a polar stereographic projection, and is publicly available together with a digital chart for printing from the project website (www.ibcso.org) and at .
  •  
5.
  • Dorschel, Boris, et al. (författare)
  • The International Bathymetric Chart of the Southern Ocean Version 2
  • 2022
  • Ingår i: Scientific Data. - : Springer Science and Business Media LLC. - 2052-4463. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Southern Ocean surrounding Antarctica is a region that is key to a range of climatic and oceanographic processes with worldwide effects, and is characterised by high biological productivity and biodiversity. Since 2013, the International Bathymetric Chart of the Southern Ocean (IBCSO) has represented the most comprehensive compilation of bathymetry for the Southern Ocean south of 60 degrees S. Recently, the IBCSO Project has combined its efforts with the Nippon Foundation - GEBCO Seabed 2030 Project supporting the goal of mapping the world's oceans by 2030. New datasets initiated a second version of IBCSO (IBCSO v2). This version extends to 50 degrees S (covering approximately 2.4 times the area of seafloor of the previous version) including the gateways of the Antarctic Circumpolar Current and the Antarctic circumpolar frontal systems. Due to increased (multibeam) data coverage, IBCSO v2 significantly improves the overall representation of the Southern Ocean seafloor and resolves many submarine landforms in more detail. This makes IBCSO v2 the most authoritative seafloor map of the area south of 50 degrees S.
  •  
6.
  • Graham, Alastair G.C., et al. (författare)
  • Rapid retreat of Thwaites Glacier in the pre-satellite era
  • 2022
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 15, s. 706-713
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the recent history of Thwaites Glacier, and the processes controlling its ongoing retreat, is key to projecting Antarctic contributions to future sea-level rise. Of particular concern is how the glacier grounding zone might evolve over coming decades where it is stabilized by sea-floor bathymetric highs. Here we use geophysical data from an autonomous underwater vehicle deployed at the Thwaites Glacier ice front, to document the ocean-floor imprint of past retreat from a sea-bed promontory. We show patterns of back-stepping sedimentary ridges formed daily by a mechanism of tidal lifting and settling at the grounding line at a time when Thwaites Glacier was more advanced than it is today. Over a duration of 5.5 months, Thwaites grounding zone retreated at a rate of >2.1 km per year—twice the rate observed by satellite at the fastest retreating part of the grounding zone between 2011 and 2019. Our results suggest that sustained pulses of rapid retreat have occurred at Thwaites Glacier in the past two centuries. Similar rapid retreat pulses are likely to occur in the near future when the grounding zone migrates back off stabilizing high points on the sea floor.
  •  
7.
  • Graham, Alastair G. C., et al. (författare)
  • Seabed corrugations beneath an Antarctic ice shelf revealed by autonomous underwater vehicle survey : Origin and implications for the history of Pine Island Glacier
  • 2013
  • Ingår i: Journal of Geophysical Research: Earth Surface. - : American Geophysical Union (AGU). - 2169-9011 .- 2169-9003. ; 118:3, s. 1356-1366
  • Tidskriftsartikel (refereegranskat)abstract
    • [1] Ice shelves are critical features in the debate about West Antarctic ice sheet change and sea level rise, both because they limit ice discharge and because they are sensitive to change in the surrounding ocean. The Pine Island Glacier ice shelf has been thinning rapidly since at least the early 1990s, which has caused its trunk to accelerate and retreat. Although the ice shelf front has remained stable for the past six decades, past periods of ice shelf collapse have been inferred from relict seabed “corrugations” (corrugated ridges), preserved 340 km from the glacier in Pine Island Trough. Here we present high-resolution bathymetry gathered by an autonomous underwater vehicle operating beneath an Antarctic ice shelf, which provides evidence of long-term change in Pine Island Glacier. Corrugations and ploughmarks on a sub-ice shelf ridge that was a former grounding line closely resemble those observed offshore, interpreted previously as the result of iceberg grounding. The same interpretation here would indicate a significantly reduced ice shelf extent within the last 11 kyr, implying Holocene glacier retreat beyond present limits, or a past tidewater glacier regime different from today. The alternative, that corrugations were not formed in open water, would question ice shelf collapse events interpreted from the geological record, revealing detail of another bed-shaping process occurring at glacier margins. We assess hypotheses for corrugation formation and suggest periodic grounding of ice shelf keels during glacier unpinning as a viable origin. This interpretation requires neither loss of the ice shelf nor glacier retreat and is consistent with a “stable” grounding-line configuration throughout the Holocene.
  •  
8.
  • Jakobsson, Martin, et al. (författare)
  • Geological record of ice shelf break-up and grounding line retreat, Pine Island Bay, West Antarctica
  • 2011
  • Ingår i: Geology. - 0091-7613 .- 1943-2682. ; 39:7, s. 691-694
  • Tidskriftsartikel (refereegranskat)abstract
    • The catastrophic break-ups of the floating Larsen A and B ice shelves (Antarctica) in 1995 and 2002 and associated acceleration of glaciers that flowed into these ice shelves were among the most dramatic glaciological events observed in historical time. This raises a question about the larger West Antarctic ice shelves. Do these shelves, with their much greater glacial discharge, have a history of collapse? Here we describe features from the seafloor in Pine Island Bay, West Antarctica, which we interpret as having been formed during a massive ice shelf break-up and associated grounding line retreat. This evidence exists in the form of seafloor landforms that we argue were produced daily as a consequence of tidally influenced motion of mega-icebergs maintained upright in an iceberg armada produced from the disintegrating ice shelf and retreating grounding line. The break-up occurred prior to ca. 12 ka and was likely a response to rapid sea-level rise or ocean warming at that time.
  •  
9.
  • Jakobsson, Martin, et al. (författare)
  • Ice sheet retreat dynamics inferred from glacial morphology of the central Pine Island Bay Trough, West Antarctica
  • 2012
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 38, s. 1-10
  • Tidskriftsartikel (refereegranskat)abstract
    • Pine Island Glacier drains portions of the West Antarctic Ice Sheet into the Amundsen Sea. During the Last Glacial Maximum the glacier extended nearly 500 km from its present location onto the outer continental shelf. Unusually restricted sea-ice cover during the austral summer of 2010 allowed for a systematic multibeam swath-bathymetric and chirp sonar survey of the mid-shelf section of Pine Island Trough. The mapped glacial landforms reveal new information about the paleo-Pine Island Ice Stream's dynamic retreat from the mid-shelf area and confirm previous suggestion of a retreat in distinct steps. The periods of grounding line stability during the overall retreat phase are marked by sediment accumulations, i.e. grounding zone wedges. These wedges are here mapped in sufficient detail to characterize spatial dimensions and estimate the volume of deposited sediment. Considering a range of sediment flux rates from the paleo-Pine Island Ice Stream we estimate that the largest and most clearly defined grounding zone wedge, located at about 73 degrees S in the surveyed area, took between 600 and 2000 years to form. The ice stream retreated landward of this wedge before 12.3 cal ka BP. The swath-bathymetric imagery of landforms in Pine Island Trough includes glacial features that suggest that retreat between periods of grounding line stability may be associated with episodes of ice shelf break-up. The depths of grounding line wedges decrease in a landward direction, from 740 to 670 m, and record elevation of the grounding line as it stepped landward. In all, the grounding line elevation varied by only similar to 80 m over a distance of just over 100 km, implying a low ice sheet profile during retreat. Finally, we revisited seismic reflection profile NB9902, acquired along Pine Island Trough in 1999, in combination with the newly acquired swath-bathymetric imagery from 2010. Together these data show that the ice stream paused during its retreat to form grounding zone wedges at an area in central Pine Island Trough where a high in dipping bedrock strata exists and the glacial trough is narrow, forming a bathymetric bottle neck.
  •  
10.
  • Kirshner, Alexandra E., et al. (författare)
  • Post-LGM deglaciation in Pine Island Bay, West Antarctica
  • 2012
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 38, s. 11-26
  • Tidskriftsartikel (refereegranskat)abstract
    • To date, understanding of ice sheet retreat within Pine Island Bay (PIB) following the Last Glacial Maximum (LGM) was based on seven radiocarbon dates and only fragmentary seafloor geomorphic evidence. During the austral summer 2009-2010, restricted sea ice cover allowed for the collection of 27 sediment cores from the outer PIB trough region. Combining these cores with data from prior cruises, over 133 cores have been used to conduct a detailed sedimentological facies analysis. These results, augmented by 23 new radiocarbon dates, are used to reconstruct the post-LGM deglacial history of PIB. Our results record a clear retreat stratigraphy in PIB composed of, from top to base; terrigenous sandy silt (distal glacimarine), pebbly sandy mud (ice-proximal glacimarine), and till. Initial retreat from the outer-continental shelf began shortly after the LGM and before 16.4 k cal yr BP, as a likely response to rising sea level. Bedforms in outer PIB document episodic retreat in the form of back-stepping grounding zone wedges and are associated with proximal glacimarine sediments. A sub-ice shelf facies is observed in central PIB and spans similar to 12.3-10.6 k cal yr BR It is possible that widespread impingement of warm water onto the continental shelf caused an abrupt and widespread change from sub-ice shelf sedimentation to distal glacimarine sedimentation dominated by widespread dispersal of terrigenous silt between 7.8 and 7.0 k cal yr BP. The final phase of retreat ended before similar to 1.3 k cal yr BP, when the grounding line migrated to a location near the current ice margin.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy