SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ogrin Jan) "

Sökning: WFRF:(Ogrin Jan)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Majerič, Matej, et al. (författare)
  • Application of Experimental Measurements in a Wind Tunnel to the Development of a Model for Aerodynamic Drag on Elite Slalom and Giant Slalom Alpine Skiers
  • 2022
  • Ingår i: Applied Sciences. - : MDPI. - 2076-3417. ; 12:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Aerodynamic drag is a major cause of energy losses during alpine ski racing. Here we developed two models for monitoring the aerodynamic drag on elite alpine skiers in the technical disciplines. While 10 skiers assumed standard positions (high, middle, tuck) with exposure to different wind speeds (40, 60, and 80 km/h) in a wind tunnel, aerodynamic drag was assessed with a force plate, shoulder height with video-based kinematics, and cross-sectional area with interactive image segmentation. The two regression models developed had 3.9–7.7% coefficients of variation and 4.5–16.5% relative limits of agreement. The first was based on the product of the coefficient of aerodynamic drag and cross-sectional area (Cd·S) and the second on the coefficient of aerodynamic drag Cd and normalized cross-sectional area of the skier Sn, both expressed as a function of normalized shoulder height (hn). In addition, normative values for Cd (0.75 ± 0.09–1.17 ± 0.09), Sn (0.51 ± 0.03–0.99 ± 0.05), hn (0.48 ± 0.03–0.79 ± 0.02), and Cd·S (0.23 ± 0.03–0.66 ± 0.09 m2) were determined for the three different positions and wind speeds. Since the uncertainty in the determination of energy losses due to aerodynamic drag relative to total energy loss with these models is expected to be <2.5%, they provide a valuable tool for analysis of skiing performance.
  •  
2.
  • Supej, Matej, et al. (författare)
  • The Contribution of Ski Poles to Aerodynamic Drag in Alpine Skiing
  • 2023
  • Ingår i: Applied Sciences. - : MDPI. - 2076-3417. ; 13:14
  • Tidskriftsartikel (refereegranskat)abstract
    • The present study was designed to determine the contribution of the cross-sectional area of the ski poles (Sp) to the total aerodynamic drag during alpine skiing. At three different wind speeds in a wind tunnel, 10 skiers assumed typical alpine skiing postures (high, middle, and tuck), and their frontal aerodynamic drag was assessed with a force plate and their cross-sectional area, along with that of their ski poles, determined by interactive image segmentation. The data collected were utilized to examine intra-subject variation in Sp, the effects of Sp on the coefficient of aerodynamic drag (Cd), and the product of Cd and total cross-sectional area (Cd∙S. The major findings were as follows: (i) Sp ranged from 0.0067 (tuck position) to 0.0262 m2 (middle position), contributing 2.2–4.8% of the total cross-sectional area, respectively; (ii) Sp was dependent on wind speed in the high and middle positions; (iii) intra-subject variations ranged from 0.0018 m2 (27.6%) in the tuck position to 0.0072 m2 (30.5%) in the high position; (iv) Sp exerted a likely effect on Cd and Cd∙S. The extensive intra- and inter-skier variability in Sp can account for as much as ~5% of the total frontal cross-sectional area and future investigations on how elite skiers optimize their positioning of the poles in a manner that reduces aerodynamic drag are warranted.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy