SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Olsen Jogvan Magnus H.) "

Sökning: WFRF:(Olsen Jogvan Magnus H.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aidas, Kestutis, et al. (författare)
  • The Dalton quantum chemistry program system
  • 2014
  • Ingår i: Wiley Interdisciplinary Reviews. Computational Molecular Science. - : Wiley. - 1759-0876. ; 4:3, s. 269-284
  • Tidskriftsartikel (refereegranskat)abstract
    • Dalton is a powerful general-purpose program system for the study of molecular electronic structure at the Hartree-Fock, Kohn-Sham, multiconfigurational self-consistent-field, MOller-Plesset, configuration-interaction, and coupled-cluster levels of theory. Apart from the total energy, a wide variety of molecular properties may be calculated using these electronic-structure models. Molecular gradients and Hessians are available for geometry optimizations, molecular dynamics, and vibrational studies, whereas magnetic resonance and optical activity can be studied in a gauge-origin-invariant manner. Frequency-dependent molecular properties can be calculated using linear, quadratic, and cubic response theory. A large number of singlet and triplet perturbation operators are available for the study of one-, two-, and three-photon processes. Environmental effects may be included using various dielectric-medium and quantum-mechanics/molecular-mechanics models. Large molecules may be studied using linear-scaling and massively parallel algorithms. Dalton is distributed at no cost from for a number of UNIX platforms.
  •  
2.
  • Olsen, Jogvan Magnus Haugaard, et al. (författare)
  • Dalton Project : A Python platform for molecular- and electronic-structure simulations of complex systems
  • 2020
  • Ingår i: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 152:21
  • Tidskriftsartikel (refereegranskat)abstract
    • The Dalton Project provides a uniform platform access to the underlying full-fledged quantum chemistry codes Dalton and LSDalton as well as the PyFraME package for automatized fragmentation and parameterization of complex molecular environments. The platform is written in Python and defines a means for library communication and interaction. Intermediate data such as integrals are exposed to the platform and made accessible to the user in the form of NumPy arrays, and the resulting data are extracted, analyzed, and visualized. Complex computational protocols that may, for instance, arise due to a need for environment fragmentation and configuration-space sampling of biochemical systems are readily assisted by the platform. The platform is designed to host additional software libraries and will serve as a hub for future modular software development efforts in the distributed Dalton community.
  •  
3.
  • Aidas, Kestutis, et al. (författare)
  • Photoabsorption of Acridine Yellow and Proflavin Bound to Human Serum Albumin Studied by Means of Quantum Mechanics/Molecular Dynamics
  • 2013
  • Ingår i: Journal of Physical Chemistry B. - : American Chemical Society (ACS). - 1520-6106 .- 1520-5207. ; 117:7, s. 2069-2080
  • Tidskriftsartikel (refereegranskat)abstract
    • Attempting to unravel mechanisms in optical probing of proteins, we have performed pilot calculations of two cationic chromophores-acridine yellow and proflavin-located at different binding sites within human serum albumin, including the two primary drug binding sites as well as a heme binding site. The computational scheme adopted involves classical molecular dynamics simulations of the ligands bound to the protein and subsequent linear response polarizable embedding density functional theory calculations of the excitation energies. A polarizable embedding potential consisting of point charges fitted to reproduce the electrostatic potential and isotropic atomic polarizabilities computed individually for every residue of the protein was used in the linear response calculations. Comparing the calculated aqueous solution-to-protein shifts of maximum absorption energies to available experimental data, we concluded that the cationic proflavin chromophore is likely not to bind albumin at its drug binding site I nor at its heme binding site. Although agreement with experimental data could only be obtained in qualitative terms, our results clearly indicate that the difference in optical response of the two probes is due to deprotonation, and not, as earlier suggested, to different binding sites. The ramifications of this finding for design of molecular probes targeting albumin or other proteins is briefly discussed.
  •  
4.
  • Eriksen, Janus J., et al. (författare)
  • Computational Protocols for Prediction of Solute NMR Relative Chemical Shifts. A Case Study of L-Tryptophan in Aqueous Solution
  • 2011
  • Ingår i: Journal of Computational Chemistry. - : Wiley. - 0192-8651 .- 1096-987X. ; 32:13, s. 2853-2864
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, we have applied two different spanning protocols for obtaining the molecular conformations of L-tryptophan in aqueous solution, namely a molecular dynamics simulation and a molecular mechanics conformational search with subsequent geometry re-optimization of the stable conformers using a quantum mechanically based method. These spanning protocols represent standard ways of obtaining a set of conformations on which NMR calculations may be performed. The results stemming from the solute-solvent configurations extracted from the MD simulation at 300 K are found to be inferior to the results stemming from the conformations extracted from the MM conformational search in terms of replicating an experimental reference as well as in achieving the correct sequence of the NMR relative chemical shifts of L-tryptophan in aqueous solution. We find this to be due to missing conformations visited during the molecular dynamics run as well as inaccuracies in geometrical parameters generated from the classical molecular dynamics simulations.
  •  
5.
  • Pedersen, Morten, et al. (författare)
  • Damped Response Theory in Combination with Polarizable Environments: The Polarizable Embedding Complex Polarization Propagator Method
  • 2014
  • Ingår i: Journal of Chemical Theory and Computation. - : American Chemical Society. - 1549-9618 .- 1549-9626. ; 10:3, s. 1164-1171
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a combination of the polarizable embedding (PE) scheme with the complex polarization propagator (CPP) method with the aim of calculating response properties including relaxation for large and complex systems. This new approach, termed PE-CPP, will benefit from the highly advanced description of the environmental electrostatic potential and polarization in the PE method as well as the treatment of near-resonant effects in the CPP approach. The PE-CPP model has been implemented in a Kohn-Sham density functional theory approach, and we present pilot calculations exemplifying the implementation for the UV/vis and carbon K-edge X-ray absorption spectra of the protein plastocyanin. Furthermore, technical details associated with a PE-CPP calculation are discussed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy