SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Olstad Ole Kristoffer) "

Sökning: WFRF:(Olstad Ole Kristoffer)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aabel, Peder, et al. (författare)
  • Transcription and microRNA Profiling of Cultured Human Tympanic Membrane Epidermal Keratinocytes
  • 2018
  • Ingår i: Journal of the Association for Research in Otolaryngology. - : SPRINGER. - 1525-3961 .- 1438-7573. ; 19:3, s. 243-260
  • Tidskriftsartikel (refereegranskat)abstract
    • The human tympanic membrane (TM) has a thin outer epidermal layer which plays an important role in TM homeostasis and ear health. The specialised cells of the TM epidermis have a different physiology compared to normal skin epidermal keratinocytes, displaying a dynamic and constitutive migration that maintains a clear TM surface and assists in regeneration. Here, we characterise and compare molecular phenotypes in keratinocyte cultures from TM and normal skin. TM keratinocytes were isolated by enzymatic digestion and cultured in vitro. We compared global mRNA and microRNA expression of the cultured cells with that of human epidermal keratinocyte cultures. Genes with either relatively higher or lower expression were analysed further using the biostatistical tools g:Profiler and Ingenuity Pathway Analysis. Approximately 500 genes were found differentially expressed. Gene ontology enrichment and Ingenuity analyses identified cellular migration and closely related biological processes to be the most significant functions of the genes highly expressed in the TM keratinocytes. The genes of low expression showed a marked difference in homeobox (HOX) genes of clusters A and C, giving the TM keratinocytes a strikingly low HOX gene expression profile. An in vitro scratch wound assay showed a more individualised cell movement in cells from the tympanic membrane than normal epidermal keratinocytes. We identified 10 microRNAs with differential expression, several of which can also be linked to regulation of cell migration and expression of HOX genes. Our data provides clues to understanding the specific physiological properties of TM keratinocytes, including candidate genes for constitutive migration, and may thus help focus further research.
  •  
2.
  • Lekva, Tove, et al. (författare)
  • Epithelial Splicing Regulator Protein 1 and Alternative Splicing in Somatotroph Adenomas
  • 2013
  • Ingår i: Endocrinology. - : The Endocrine Society. - 0013-7227 .- 1945-7170. ; 154:9, s. 3331-3343
  • Tidskriftsartikel (refereegranskat)abstract
    • Somatotroph adenomas secrete supraphysiological amounts of GH, causing acromegaly. We have previously hypothesized that epithelial mesenchymal transition (EMT) may play a central role in the progression of these adenomas and that epithelial splicing regulator 1 (ESRP1) may function prominently as a master regulator of the EMT process in pituitary adenomas causing acromegaly. To further elucidate the role of ESRP1 in somatotroph adenomas and in EMT progression, we used RNA sequencing (RNAseq) to sequence somatotroph adenomas characterized by high and low ESRP1 levels. Transcripts identified by RNAseq were analyzed in 65 somatotroph adenomas and in GH-producing pituitary rat cells with a specific knockdown of Esrp1. The clinical importance of the transcripts was further investigated by correlating mRNA expression levels with clinical indices of disease activity and treatment response. Many of the transcripts and isoforms identified by RNAseq and verified by quantitative PCR were involved in vesicle transport and calcium signaling and were associated with clinical outcomes. Silencing Esrp1 in GH3 cells resulted in changes of gene expression overlapping the data observed in human somatotroph adenomas and revealed a decreased granulation pattern and attenuated GH release. We observed an alternative splicing pattern for F-box and leucine-rich repeat protein 20, depending on the ESPR1 levels and on changes in circulating IGF-I levels after somatostatin analog treatment. Our study indicates that ESRP1 in somatotroph adenomas regulates transcripts that may be essential in the EMT progression and in the response to somatostatin analog treatment.
  •  
3.
  • Meen, Astri J, et al. (författare)
  • Serglycin protects against high fat diet-induced increase in serum LDL in mice
  • 2015
  • Ingår i: Glycoconjugate Journal. - : Springer Science and Business Media LLC. - 0282-0080 .- 1573-4986. ; 32:9, s. 703-714
  • Tidskriftsartikel (refereegranskat)abstract
    • Proteoglycans have been implicated in regulation of lipoprotein metabolism. However, the impact of serglycin, the major proteoglycan expressed by many hematopoietic- and endothelial cells, on lipoprotein metabolism has not been explored. Here we addressed this issue by comparing several parameters of lipid metabolism in wild type (WT) and serglycin-/- mice, both at baseline and after feeding mice the Paigen diet. We show that, after feeding this diet for 20 weeks, serglycin deficient mice exhibited elevated concentrations of serum LDL in comparison with WT mice, thus suggesting that serglycin protects against an elevation of serum LDL levels after intake of a high-fat diet. Body weight increased in both groups, but only significantly in the serglycin-/- group. To explore the mechanism underlying this phenotype, genome-wide expression analysis was performed on liver tissues from WT and serglycin-/- mice. This analysis showed that serglycin-deficiency is associated with differential expression of numerous genes involved in the regulation of lipid metabolism, suggesting that the impact of serglycin on LDL levels may be related to effects at the gene expression level. In particular, several members of the CYP gene family were differently regulated in serglycin-/- compared with WT mice. Moreover, upstream regulator analysis suggested that several pro-inflammatory pathways, including the NFκB pathway, could contribute to the impact of serglycin on LDL. Hence, the elevation of serum LDL seen in serglycin-/- mice may be linked to dysregulated inflammatory responses. Taken together, our findings introduce serglycin as a novel player in processes that regulate lipid metabolism.
  •  
4.
  • Myhrstad, Mari C. W., et al. (författare)
  • Healthy Nordic Diet Modulates the Expression of Genes Related to Mitochondrial Function and Immune Response in Peripheral Blood Mononuclear Cells from Subjects with Metabolic Syndrome-A SYSDIET Sub-Study
  • 2019
  • Ingår i: Molecular Nutrition & Food Research. - : John Wiley & Sons. - 1613-4125 .- 1613-4133. ; 63:13
  • Tidskriftsartikel (refereegranskat)abstract
    • Scope To explore the effect of a healthy Nordic diet on the global transcriptome profile in peripheral blood mononuclear cells (PBMCs) of subjects with metabolic syndrome. Methods and results Subjects with metabolic syndrome undergo a 18/24 week randomized intervention study comparing an isocaloric healthy Nordic diet with an average habitual Nordic diet served as control (SYSDIET study). Altogether, 68 participants are included. PBMCs are obtained before and after intervention and total RNA is subjected to global transcriptome analysis. 1302 probe sets are differentially expressed between the diet groups (p-value < 0.05). Twenty-five of these are significantly regulated (FDR q-value < 0.25) and are mainly involved in mitochondrial function, cell growth, and cell adhesion. The list of 1302 regulated probe sets is subjected to functional analyses. Pathways and processes involved in the mitochondrial electron transport chain, immune response, and cell cycle are downregulated in the healthy Nordic diet group. In addition, gene transcripts with common motifs for 42 transcription factors, including NFR1, NFR2, and NF-kappa B, are downregulated in the healthy Nordic diet group. Conclusion These results suggest that benefits of a healthy diet may be mediated by improved mitochondrial function and reduced inflammation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy