SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Peijs Lone) "

Sökning: WFRF:(Peijs Lone)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Davegårdh, Cajsa, et al. (författare)
  • Abnormal epigenetic changes during differentiation of human skeletal muscle stem cells from obese subjects
  • 2017
  • Ingår i: BMC Medicine. - : Springer Science and Business Media LLC. - 1741-7015. ; 15:1, s. 1-27
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Human skeletal muscle stem cells are important for muscle regeneration. However, the combined genome-wide DNA methylation and expression changes taking place during adult myogenesis have not been described in detail and novel myogenic factors may be discovered. Additionally, obesity is associated with low relative muscle mass and diminished metabolism. Epigenetic alterations taking place during myogenesis might contribute to these defects. Methods: We used Infinium HumanMethylation450 BeadChip Kit (Illumina) and HumanHT-12 Expression BeadChip (Illumina) to analyze genome-wide DNA methylation and transcription before versus after differentiation of primary human myoblasts from 14 non-obese and 14 obese individuals. Functional follow-up experiments were performed using siRNA mediated gene silencing in primary human myoblasts and a transgenic mouse model. Results: We observed genome-wide changes in DNA methylation and expression patterns during differentiation of primary human muscle stem cells (myoblasts). We identified epigenetic and transcriptional changes of myogenic transcription factors (MYOD1, MYOG, MYF5, MYF6, PAX7, MEF2A, MEF2C, and MEF2D), cell cycle regulators, metabolic enzymes and genes previously not linked to myogenesis, including IL32, metallothioneins, and pregnancy-specific beta-1-glycoproteins. Functional studies demonstrated IL-32 as a novel target that regulates human myogenesis, insulin sensitivity and ATP levels in muscle cells. Furthermore, IL32 transgenic mice had reduced insulin response and muscle weight. Remarkably, approximately 3.7 times more methylation changes (147,161 versus 39,572) were observed during differentiation of myoblasts from obese versus non-obese subjects. In accordance, DNMT1 expression increased during myogenesis only in obese subjects. Interestingly, numerous genes implicated in metabolic diseases and epigenetic regulation showed differential methylation and expression during differentiation only in obese subjects. Conclusions: Our study identifies IL-32 as a novel myogenic regulator, provides a comprehensive map of the dynamic epigenome during differentiation of human muscle stem cells and reveals abnormal epigenetic changes in obesity.
  •  
2.
  • Jespersen, Naja Z., et al. (författare)
  • Heterogeneity in the perirenal region of humans suggests presence of dormant brown adipose tissue that contains brown fat precursor cells
  • 2019
  • Ingår i: Molecular Metabolism. - : Elsevier BV. - 2212-8778. ; 24, s. 30-43
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective:Increasing the amounts of functionally competent brown adipose tissue (BAT) in adult humans has the potential to restore dysfunctional metabolism and counteract obesity. In this study, we aimed to characterize the human perirenal fat depot, and we hypothesized that there would be regional, within-depot differences in the adipose signature depending on local sympathetic activity.Methods:We characterized fat specimens from four different perirenal regions of adult kidney donors, through a combination of qPCR mapping, immunohistochemical staining, RNA-sequencing, and pre-adipocyte isolation. Candidate gene signatures, separated by adipocyte morphology, were recapitulated in a murine model of unilocular brown fat induced by thermoneutrality and high fat diet.Results:We identified widespread amounts of dormant brown adipose tissue throughout the perirenal depot, which was contrasted by multilocular BAT, primarily found near the adrenal gland. Dormant BAT was characterized by a unilocular morphology and a distinct gene expression profile, which partly overlapped with that of subcutaneous white adipose tissue (WAT). Brown fat precursor cells, which differentiated into functional brown adipocytes were present in the entire perirenal fat depot, regardless of state. We identified SPARC as a candidate adipokine contributing to a dormant BAT state, and CLSTN3 as a novel marker for multilocular BAT.Conclusions:We propose that perirenal adipose tissue in adult humans consists mainly of dormant BAT and provide a data set for future research on factors which can reactivate dormant BAT into active BAT, a potential strategy for combatting obesity and metabolic disease.
  •  
3.
  • Zenius Jespersen, Naja, et al. (författare)
  • A classical brown adipose tissue mRNA signature partly overlaps with brite in the supraclavicular region of adult humans
  • 2013
  • Ingår i: Cell Metabolism. - : Elsevier BV. - 1550-4131 .- 1932-7420. ; 17:5, s. 798-805
  • Tidskriftsartikel (refereegranskat)abstract
    • Human brown adipose tissue (BAT) has been detected in adults but was recently suggested to be of brite/beige origin. We collected BAT from the supraclavicular region in 21 patients undergoing surgery for suspected cancer in the neck area and assessed the gene expression of established murine markers for brown, brite/beige, and white adipocytes. We demonstrate that a classical brown expression signature, including upregulation of miR-206, miR-133b, LHX8, and ZIC1 and downregulation of HOXC8 and HOXC9, coexists with an upregulation of two newly established brite/beige markers, TBX1 and TMEM26. A similar mRNA expression profile was observed when comparing isolated human adipocytes from BAT and white adipose tissue (WAT) depots, differentiated in vitro. In conclusion, our data suggest that human BAT might consist of both classical brown and recruitable brite adipocytes, an observation important for future considerations on how to induce human BAT.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy