SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Peng Hongjian) "

Sökning: WFRF:(Peng Hongjian)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Song, Jiage, et al. (författare)
  • Over 13% Efficient Organic Solar Cells Based on Low-Cost Pentacyclic A-DA D-A-Type Nonfullerene Acceptor
  • 2021
  • Ingår i: Solar RRL. - : Wiley-Blackwell. - 2367-198X. ; 5:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent studies have almost focused on finding active layer materials with extended pi-conjugation structures for high-performance organic solar cells (OSCs). However, with the extension of conjugate length, the synthesis difficulty and cost of materials will increase. Achieving high efficiency while reducing material costs is a prerequisite for the commercialization of OSCs. Herein, two low-cost A-DA D-A-type (where A and D represent an electron-withdrawing unit and an electron-donating unit, respectively) nonfullerene acceptors (Y25,Y26) are synthesized with pentacyclic fused backbone as the DA D electron-deficient core and 5,6-difluoro-3-(dicyandiamethyl) indigo as the end groups. Compared with classical Y series acceptors with heptacyclic backbone, although Y25 and Y26 own the reduced conjugated length, they still show moderate performance (11.65% and 13.34%), and the cost of synthesis is significantly reduced. Therefore, we provide a new molecular design idea for commercially efficient nonfullerene OSCs acceptors. We also find that adding alkyl chains to the beta site of thiophenes is beneficial to obtaining the reduced energetic disorder, dominant molecular stacking, and desirable morphology, which can facilitate charge carrier transport and prompt higher short-circuit current density (J(sc)) as well as fill factor.
  •  
2.
  • Yuan, Jun, et al. (författare)
  • Understanding energetic disorder in electron-deficient-core-based non-fullerene solar cells
  • 2020
  • Ingår i: Science in China Series B. - : SCIENCE PRESS. - 1674-7291 .- 1869-1870. ; 63:8, s. 1159-1168
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent advances in material design for organic solar cells (OSCs) are primarily focused on developing near-infrared non-fullerene acceptors, typically A-DA D-A type acceptors (where A abbreviates an electron-withdrawing moiety and D, an electron-donor moiety), to achieve high external quantum efficiency while maintaining low voltage loss. However, the charge transport is still constrained by unfavorable molecular conformations, resulting in high energetic disorder and limiting the device performance. Here, a facile design strategy is reported by introducing the "wing" (alkyl chains) at the terminal of the DA D central core of the A-DA D-A type acceptor to achieve a favorable and ordered molecular orientation and therefore facilitate charge carrier transport. Benefitting from the reduced disorder, the electron mobilities could be significantly enhanced for the "wing"-containing molecules. By carefully changing the length of alkyl chains, the mobility of acceptor has been tuned to match with that of donor, leading to a minimized charge imbalance factor and a high fill factor (FF). We further provide useful design strategies for highly efficient OSCs with high FF.
  •  
3.
  • Zhu, Can, et al. (författare)
  • Tuning the electron-deficient core of a non-fullerene acceptor to achieve over 17% efficiency in a single-junction organic solar cell
  • 2020
  • Ingår i: Energy & Environmental Science. - : ROYAL SOC CHEMISTRY. - 1754-5692 .- 1754-5706. ; 13:8, s. 2459-2466
  • Tidskriftsartikel (refereegranskat)abstract
    • Finding effective molecular design strategies to enable efficient charge generation and small energy loss is among the long-standing challenges in developing high performance non-fullerene organic solar cells (OSCs). Recently, we reported Y-series non-fullerene acceptors with an electron-deficient-core-based fused structure (typically Y6), opening a new door to achieve high external quantum efficiency (∼80%) while maintaining low energy loss (∼0.57 eV). On this basis, further reducing the energy losses and ultimately improving the performance of OSCs has become a research hotspot. In this paper, we design and synthesize a new member of the Y-series acceptor family, Y18, which adopts a fused benzotriazole segment with unique luminescence properties as its electron-deficient core. Compared to Y6, the benzotriazole-based acceptor Y18 exhibits extended optical absorption and higher voltage. Consequently, the device delivers a promising power conversion efficiency of 16.52% with a very low energy loss of 0.53 eV. Further device optimization by exploiting a ternary blend strategy allowed us to achieve a high efficiency of 17.11% (certified as 16.76% by NREL). Y18 may become one of the most important candidate materials for its broader absorption spectra and higher voltage of Y18 (compared to Y6) in the OSCs field.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy