SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Peroni D) "

Sökning: WFRF:(Peroni D)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Bousquet, J, et al. (författare)
  • Nrf2-interacting nutrients and COVID-19: time for research to develop adaptation strategies
  • 2020
  • Ingår i: Clinical and translational allergy. - : Wiley. - 2045-7022. ; 10:1, s. 58-
  • Tidskriftsartikel (refereegranskat)abstract
    • There are large between- and within-country variations in COVID-19 death rates. Some very low death rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapamycin, PPARγ:Peroxisome proliferator-activated receptor, NFκB: Nuclear factor kappa B, ERK: Extracellular signal-regulated kinases and eIF2α:Elongation initiation factor 2α). They may as a result be important in mitigating the severity of COVID-19, acting through the endoplasmic reticulum stress or ACE-Angiotensin-II-AT1R axis (AT1R) pathway. Many Nrf2-interacting nutrients are also interacting with TRPA1 and/or TRPV1. Interestingly, geographical areas with very low COVID-19 mortality are those with the lowest prevalence of obesity (Sub-Saharan Africa and Asia). It is tempting to propose that Nrf2-interacting foods and nutrients can re-balance insulin resistance and have a significant effect on COVID-19 severity. It is therefore possible that the intake of these foods may restore an optimal natural balance for the Nrf2 pathway and may be of interest in the mitigation of COVID-19 severity.
  •  
3.
  •  
4.
  •  
5.
  • De Simone, N., et al. (författare)
  • Comparison of models and measurements of protons of trapped and secondary origin with PAMELA experiment
  • 2009
  • Ingår i: 31st International Cosmic Ray Conference, ICRC 2009. - : University of Lodz.
  • Konferensbidrag (refereegranskat)abstract
    • PAMELA is a satellite borne experiment designed to study with great accuracy cosmic rays of galactic, solar, and trapped nature in a wide energy range (protons: 80 MeV-700 GeV, electrons 50 MeV-400 GeV). Main objective is the study of the antimatter component: Antiprotons (80 MeV-190 GeV), positrons (50 MeV-270 GeV) and search for antinuclei with a precision of the order of 10-8). The experiment, housed on board the Russian Resurs- DK1 satellite, was launched on June, 15th 2006 in a 350x600 km orbit with an inclination of 70 degrees. In this work we present the measurement of galactic and reentrant albedo proton spectra in the energy range between 100 MeV and 300 GeV. The galactic protons refer to the period 2006-2008, showing evidence of Solar modulation effects even during the solar minimum.
  •  
6.
  •  
7.
  • Syed, Ismail, et al. (författare)
  • Methodological Issues in Studying PAHSA Biology: Masking PAHSA Effects.
  • 2018
  • Ingår i: Cell metabolism. - : Elsevier BV. - 1932-7420 .- 1550-4131. ; 28:4, s. 543-546
  • Tidskriftsartikel (refereegranskat)abstract
    • PAHSAs are anti-diabetic and anti-inflammatory lipids. Syed et al. identify numerous experimental differences that likely account for the failure of Pflimlin et al. to observe PAHSA beneficial effects. The differences include different HFDs resulting in minimal/no glucose intolerance, different assay conditions, an LC-MS protocol that was not validated, and use of olive oil, a bioactive nutrient that improves glucose tolerance, as a vehicle.
  •  
8.
  • Yore, M. M., et al. (författare)
  • Discovery of a Class of Endogenous Mammalian Lipids with Anti-Diabetic and Anti-inflammatory Effects
  • 2014
  • Ingår i: Cell. - : Elsevier BV. - 0092-8674. ; 159:2, s. 318-332
  • Tidskriftsartikel (refereegranskat)abstract
    • Increased adipose tissue lipogenesis is associated with enhanced insulin sensitivity. Mice overexpressing the Glut4 glucose transporter in adipocytes have elevated lipogenesis and increased glucose tolerance despite being obese with elevated circulating fatty acids. Lipidomic analysis of adipose tissue revealed the existence of branched fatty acid esters of hydroxy fatty acids (FAHFAs) that were elevated 16- to 18-fold in these mice. FAHFA isomers differ by the branched ester position on the hydroxy fatty acid (e.g., palmitic-acid-9-hydroxy-stearic-acid, 9-PAHSA). PAHSAs are synthesized in vivo and regulated by fasting and high-fat feeding. PAHSA levels correlate highly with insulin sensitivity and are reduced in adipose tissue and serum of insulin-resistant humans. PAHSA administration in mice lowers ambient glycemia and improves glucose tolerance while stimulating GLP-1 and insulin secretion. PAHSAs also reduce adipose tissue inflammation. In adipocytes, PAHSAs signal through GPR120 to enhance insulin-stimulated glucose uptake. Thus, FAHFAs are endogenous lipids with the potential to treat type 2 diabetes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy