SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Petro S.) "

Sökning: WFRF:(Petro S.)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ruilope, LM, et al. (författare)
  • Design and Baseline Characteristics of the Finerenone in Reducing Cardiovascular Mortality and Morbidity in Diabetic Kidney Disease Trial
  • 2019
  • Ingår i: American journal of nephrology. - : S. Karger AG. - 1421-9670 .- 0250-8095. ; 50:5, s. 345-356
  • Tidskriftsartikel (refereegranskat)abstract
    • <b><i>Background:</i></b> Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. <b><i>Patients and</i></b> <b><i>Methods:</i></b> The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate ≥25 mL/min/1.73 m<sup>2</sup> and albuminuria (urinary albumin-to-creatinine ratio ≥30 to ≤5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level α = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. <b><i>Conclusions:</i></b> FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049.
  •  
2.
  •  
3.
  • Leisawitz, David, et al. (författare)
  • The origins space telescope
  • 2019
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 0277-786X .- 1996-756X. ; 11115
  • Konferensbidrag (refereegranskat)abstract
    • The Origins Space Telescope will trace the history of our origins from the time dust and heavy elements permanently altered the cosmic landscape to present-day life. How did galaxies evolve from the earliest galactic systems to those found in the universe today? How do habitable planets form? How common are life-bearing worlds? To answer these alluring questions, Origins will operate at mid-and far-infrared wavelengths and offer powerful spectroscopic instruments and sensitivity three orders of magnitude better than that of Herschel, the largest telescope flown in space to date. After a 3 1/2 year study, the Origins Science and Technology Definition Team will recommend to the Decadal Survey a concept for Origins with a 5.9-m diameter telescope cryocooled to 4.5 K and equipped with three scientific instruments. A mid-infrared instrument (MISC-T) will measure the spectra of transiting exoplanets in the 2.8-20 μm wavelength range and offer unprecedented sensitivity, enabling definitive biosignature detections. The Far-IR Imager Polarimeter (FIP) will be able to survey thousands of square degrees with broadband imaging at 50 and 250 μm. The Origins Survey Spectrometer (OSS) will cover wavelengths from 25-588 μm, make wide-area and deep spectroscopic surveys with spectral resolving power R ∼ 300, and pointed observations at R ∼ 40,000 and 300,000 with selectable instrument modes. Origins was designed to minimize complexity. The telescope has a Spitzer-like architecture and requires very few deployments after launch. The cryo-thermal system design leverages JWST technology and experience. A combination of current-state-of-the-art cryocoolers and next-generation detector technology will enable Origins' natural backgroundlimited sensitivity.
  •  
4.
  • Leisawitz, David, et al. (författare)
  • The Origins Space Telescope: Mission concept overview
  • 2018
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 0277-786X .- 1996-756X. ; 10698
  • Konferensbidrag (refereegranskat)abstract
    • Downloading of the abstract is permitted for personal use only. The Origins Space Telescope (OST) will trace the history of our origins from the time dust and heavy elements permanently altered the cosmic landscape to present-day life. How did the universe evolve in response to its changing ingredients? How common are life-bearing planets? To accomplish its scientific objectives, OST will operate at mid- and far-infrared wavelengths and offer superlative sensitivity and new spectroscopic capabilities. The OST study team will present a scientifically compelling, executable mission concept to the 2020 Decadal Survey in Astrophysics. To understand the concept solution space, our team studied two alternative mission concepts. We report on the study approach and describe both of these concepts, give the rationale for major design decisions, and briefly describe the mission-enabling technology.
  •  
5.
  • Leisawitz, David, et al. (författare)
  • Origins Space Telescope: Baseline mission concept
  • 2021
  • Ingår i: Journal of Astronomical Telescopes, Instruments, and Systems. - 2329-4221 .- 2329-4124. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Origins Space Telescope will trace the history of our origins from the time dust and heavy elements permanently altered the cosmic landscape to present-day life. How did galaxies evolve from the earliest galactic systems to those found in the Universe today? How do habitable planets form? How common are life-bearing worlds? To answer these alluring questions, Origins will operate at mid-and far-infrared (IR) wavelengths and offer powerful spectroscopic instruments and sensitivity three orders of magnitude better than that of the Herschel Space Observatory, the largest telescope flown in space to date. We describe the baseline concept for Origins recommended to the 2020 US Decadal Survey in Astronomy and Astrophysics. The baseline design includes a 5.9-m diameter telescope cryocooled to 4.5 K and equipped with three scientific instruments. A mid-infrared instrument (Mid-Infrared Spectrometer and Camera Transit spectrometer) will measure the spectra of transiting exoplanets in the 2.8 to 20 μm wavelength range and offer unprecedented spectrophotometric precision, enabling definitive exoplanet biosignature detections. The far-IR imager polarimeter will be able to survey thousands of square degrees with broadband imaging at 50 and 250 μm. The Origins Survey Spectrometer will cover wavelengths from 25 to 588 μm, making wide-area and deep spectroscopic surveys with spectral resolving power R ∼ 300, and pointed observations at R ∼ 40,000 and 300,000 with selectable instrument modes. Origins was designed to minimize complexity. The architecture is similar to that of the Spitzer Space Telescope and requires very few deployments after launch, while the cryothermal system design leverages James Webb Space Telescope technology and experience. A combination of current-state-of-the-art cryocoolers and next-generation detector technology will enable Origins' natural background-limited sensitivity.
  •  
6.
  •  
7.
  •  
8.
  • Cardenas, EI, et al. (författare)
  • Increased IL-26 associates with markers of hyperinflammation and tissue damage in patients with acute COVID-19
  • 2022
  • Ingår i: Frontiers in immunology. - : Frontiers Media SA. - 1664-3224. ; 13, s. 1016991-
  • Tidskriftsartikel (refereegranskat)abstract
    • Interleukin-26 (IL-26) is released by several immune and structural cells following stimulation of toll-like receptors (TLRs), whereupon it can directly inhibit viral replication and enhance neutrophil chemotaxis. Given these unique properties, IL-26 has emerged as an intriguing mediator of host defense in the lungs. However, the role of IL-26 in COVID-19 has not been thoroughly investigated. Here, we characterized the involvement of IL-26 in the hyperinflammation and tissue damage that occurs in patients with acute COVID-19. We found that IL-26 is markedly increased in blood samples from these patients, and that the concentration of IL-26 correlates with those of the neutrophil-mobilizing cytokines IL-8 and TNFα, respectively. Moreover, the increase in blood IL-26 correlates with enhanced surface expression of the “don’t eat me” signal CD47 on blood neutrophils isolated from patients with acute COVID-19. Finally, we found that the blood concentration of IL-26 correlates with that of increased lactate dehydrogenase, an established marker of tissue damage, and decreased mean corpuscular hemoglobin (MCH), a previously verified hematological aberration in COVID-19, both of which are associated with severe disease. Thus, our findings indicate that increased systemic IL-26 associates with markers of hyperinflammation and tissue damage in patients with acute COVID-19, thereby forwarding the kinocidin IL-26 as a potential target for diagnosis, monitoring, and therapy in this deadly disease.
  •  
9.
  • Ekstedt, S, et al. (författare)
  • A prolonged innate systemic immune response in COVID-19
  • 2022
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 12:1, s. 9915-
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite the introduction of vaccines, COVID-19 still affects millions of people worldwide. A better understanding of pathophysiology and the discovery of novel therapies are needed. One of the cells of interest in COVID-19 is the neutrophil. This cell type is being recruited to a site of inflammation as one of the first immune cells. In this project, we investigated a variety of neutrophils phenotypes during COVID-19 by measuring the expression of markers for migration, maturity, activation, gelatinase granules and secondary granules using flow cytometry. We show that neutrophils during COVID-19 exhibit altered phenotypes compared to healthy individuals. The activation level including NETs production and maturity of neutrophils seem to last longer during COVID-19 than expected for innate immunity. Neutrophils as one of the drivers of severe cases of COVID-19 are considered as potential treatment targets. However, for a successful implementation of treatment, there is a need for a better understanding of neutrophil functions and phenotypes in COVID-19. Our study answers some of those questions.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12
Typ av publikation
tidskriftsartikel (8)
konferensbidrag (3)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (10)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Cardell, LO (5)
Ekstedt, S (5)
Petro, M (5)
Scott, D. (4)
Karlsson, A. (4)
Piersiala, K (4)
visa fler...
Howard, J. (3)
Battersby, C. (3)
Wiedner, M.C. (3)
Allen, L. (3)
Georen, SK (3)
Olson, J (3)
Bell, R (3)
De Beck, Elvire, 198 ... (3)
Melnick, G. J. (3)
Carey, Sean (3)
Cardenas, EI (3)
Armus, Lee (3)
Kataria, Tiffany (3)
Meixner, Margaret (3)
Pope, Alexandra (3)
Stevenson, Kevin B. (3)
Cooray, A. (3)
Leisawitz, David (3)
Bauer, James (3)
Bradford, C. Matt (3)
Ennico, Kimberly (3)
Milam, S. (3)
Narayanan, D. (3)
Padgett, Deborah (3)
Pontoppidan, Klaus (3)
Roellig, Thomas (3)
Sandstrom, Karin (3)
Vieira, Joaquin (3)
Wright, Edward (3)
Zmuidzinas, Jonas (3)
Staguhn, Johannes (3)
Benford, Dominic (3)
Mamajek, Eric E. (3)
Neff, Susan G. (3)
Burgarella, Denis (3)
Gerin, M. (3)
Helmich, F. (3)
Sakon, Itsuki (3)
Jacoby, M (3)
Carter, R (3)
Kagedal, A (3)
Webster, C (3)
Tompkins, S. (3)
Martins, G. (3)
visa färre...
Lärosäte
Karolinska Institutet (7)
Chalmers tekniska högskola (3)
Linköpings universitet (2)
Lunds universitet (2)
Umeå universitet (1)
Uppsala universitet (1)
visa fler...
Stockholms universitet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (12)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (4)
Medicin och hälsovetenskap (3)
Teknik (2)
Humaniora (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy