SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pikkarainen S.) "

Sökning: WFRF:(Pikkarainen S.)

  • Resultat 1-10 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sliz, E., et al. (författare)
  • Evidence of a causal effect of genetic tendency to gain muscle mass on uterine leiomyomata
  • 2023
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Uterine leiomyomata (UL) are the most common tumours of the female genital tract and the primary cause of surgical removal of the uterus. Genetic factors contribute to UL susceptibility. To add understanding to the heritable genetic risk factors, we conduct a genome-wide association study (GWAS) of UL in up to 426,558 European women from FinnGen and a previous UL meta-GWAS. In addition to the 50 known UL loci, we identify 22 loci that have not been associated with UL in prior studies. UL-associated loci harbour genes enriched for development, growth, and cellular senescence. Of particular interest are the smooth muscle cell differentiation and proliferation-regulating genes functioning on the myocardin-cyclin dependent kinase inhibitor 1A pathway. Our results further suggest that genetic predisposition to increased fat-free mass may be causally related to higher UL risk, underscoring the involvement of altered muscle tissue biology in UL pathophysiology. Overall, our findings add to the understanding of the genetic pathways underlying UL, which may aid in developing novel therapeutics.
  •  
2.
  • Tabassum, R, et al. (författare)
  • Genetic architecture of human plasma lipidome and its link to cardiovascular disease
  • 2019
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1, s. 4329-
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding genetic architecture of plasma lipidome could provide better insights into lipid metabolism and its link to cardiovascular diseases (CVDs). Here, we perform genome-wide association analyses of 141 lipid species (n = 2,181 individuals), followed by phenome-wide scans with 25 CVD related phenotypes (n = 511,700 individuals). We identify 35 lipid-species-associated loci (P <5 ×10−8), 10 of which associate with CVD risk including five new loci-COL5A1, GLTPD2, SPTLC3, MBOAT7 and GALNT16 (false discovery rate<0.05). We identify loci for lipid species that are shown to predict CVD e.g., SPTLC3 for CER(d18:1/24:1). We show that lipoprotein lipase (LPL) may more efficiently hydrolyze medium length triacylglycerides (TAGs) than others. Polyunsaturated lipids have highest heritability and genetic correlations, suggesting considerable genetic regulation at fatty acids levels. We find low genetic correlations between traditional lipids and lipid species. Our results show that lipidomic profiles capture information beyond traditional lipids and identify genetic variants modifying lipid levels and risk of CVD.
  •  
3.
  •  
4.
  •  
5.
  • Kolhinen, V. S., et al. (författare)
  • Recommissioning of JYFLTRAP at the new IGISOL-4 facility
  • 2013
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section B. - : Elsevier BV. - 0168-583X .- 1872-9584. ; 317:Part B, s. 506-509
  • Tidskriftsartikel (refereegranskat)abstract
    • The JYFLTRAP double Penning-trap system was moved to a new location along with the Ion Guide Isotope Separator On-line (IGISOL) facility at the Accelerator Laboratory of the University of Jyväskylä. The move made it possible to upgrade various parts of the facility. For example, separate beam lines for JYFLTRAP and the collinear laser spectroscopy station were constructed after the radio-frequency quadrupole cooler and buncher. In this contribution we give an overview of the new JYFLTRAP facility and results from the first stable ion-beam tests.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • van Doorn, Ljcv, et al. (författare)
  • Improved Cerebrospinal Fluid-Based Discrimination between Alzheimer's Disease Patients and Controls after Correction for Ventricular Volumes
  • 2017
  • Ingår i: Journal of Alzheimers Disease. - : IOS Press. - 1387-2877 .- 1875-8908. ; 56:2, s. 543-555
  • Tidskriftsartikel (refereegranskat)abstract
    • Cerebrospinal fluid (CSF) biomarkers may support the diagnosis of Alzheimer's disease (AD). We studied if the diagnostic power of AD CSF biomarker concentrations, i.e., A beta(42), total tau (t-tau), and phosphorylated tau (p-tau), is affected by differences in lateral ventricular volume (VV), using CSF biomarker data and magnetic resonance imaging (MRI) scans of 730 subjects, from 13 European Memory Clinics. We developed a Matlab-algorithm for standardized automated segmentation analysis of T1 weighted MRI scans in SPM8 for determining VV, and computed its ratio with total intracranial volume (TIV) as proxy for total CSF volume. The diagnostic power of CSF biomarkers (and their combination), either corrected for VV/TIV ratio or not, was determined by ROC analysis. CSF A beta(42) levels inversely correlated to VV/TIV in the whole study population (A beta(42): r = -0.28; p < 0.0001). For CSF t-tau and p-tau, this association only reached statistical significance in the combined MCI and AD group (t-tau: r = -0.15; p-tau: r = -0.13; both p < 0.01). Correction for differences in VV/TIV improved the differentiation of AD versus controls based on CSF A beta(42) alone (AUC: 0.75 versus 0.81) or in combination with t-tau (AUC: 0.81 versus 0.91). In conclusion, differences in VV may be an important confounder in interpreting CSF A beta(42) levels.
  •  
10.
  • Wesenhagen, K. E. J., et al. (författare)
  • Effects of age, amyloid, sex, and APOE epsilon 4 on the CSF proteome in normal cognition
  • 2022
  • Ingår i: Alzheimer's & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction It is important to understand which biological processes change with aging, and how such changes are associated with increased Alzheimer's disease (AD) risk. We studied how cerebrospinal fluid (CSF) proteomics changed with age and tested if associations depended on amyloid status, sex, and apolipoprotein E sigma 4 genotype. Methods We included 277 cognitively intact individuals aged 46 to 89 years from Alzheimer's Disease Neuroimaging Initiative, European Medical Information Framework for Alzheimer's Disease Multimodal Biomarker Discovery, and Metabolic Syndrome in Men. In total, 1149 proteins were measured with liquid chromatography mass spectrometry with multiple reaction monitoring/Rules-Based Medicine, tandem mass tag mass spectrometry, and SOMAscan. We tested associations between age and protein levels in linear models and tested enrichment for Reactome pathways. Results Levels of 252 proteins increased with age independently of amyloid status. These proteins were associated with immune and signaling processes. Levels of 21 proteins decreased with older age exclusively in amyloid abnormal participants and these were enriched for extracellular matrix organization. Discussion We found amyloid-independent and -dependent CSF proteome changes with older age, perhaps representing physiological aging and early AD pathology.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy