SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Podgorski G) "

Sökning: WFRF:(Podgorski G)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ruilope, LM, et al. (författare)
  • Design and Baseline Characteristics of the Finerenone in Reducing Cardiovascular Mortality and Morbidity in Diabetic Kidney Disease Trial
  • 2019
  • Ingår i: American journal of nephrology. - : S. Karger AG. - 1421-9670 .- 0250-8095. ; 50:5, s. 345-356
  • Tidskriftsartikel (refereegranskat)abstract
    • <b><i>Background:</i></b> Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. <b><i>Patients and</i></b> <b><i>Methods:</i></b> The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate ≥25 mL/min/1.73 m<sup>2</sup> and albuminuria (urinary albumin-to-creatinine ratio ≥30 to ≤5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level α = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. <b><i>Conclusions:</i></b> FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049.
  •  
2.
  • Kalscheuer, Thomas, et al. (författare)
  • Joint inversions of three types of electromagnetic data explicitly constrained by seismic observations : results from the central Okavango Delta, Botswana
  • 2015
  • Ingår i: Geophysical Journal International. - : Oxford University Press (OUP). - 0956-540X .- 1365-246X. ; 202:3, s. 1429-1452
  • Tidskriftsartikel (refereegranskat)abstract
    • The Okavango Delta of northern Botswana is one of the world’s largest inland deltas or megafans. To obtain information on the character of sediments and basement depths, audio-magnetotelluric (AMT), controlled-source audiomagnetotelluric (CSAMT) and central-loop transient electromagnetic (TEM) data were collected on the largest island within the delta. The data were inverted individually and jointly for 1-D models of electric resistivity. Distortion effects in the AMT and CSAMT data were accounted for by including galvanic distortion tensors as free parameters in the inversions. By employing Marquardt–Levenberg inversion, we found that a 3-layer model comprising a resistive layer overlying sequentially a conductive layer and a deeper resistive layer was sufficient to explain all of the electromagnetic data. However, the top of the basal resistive layer from electromagnetic-only inversions was much shallower than the well-determined basement depth observed in high-quality seismic reflection images and seismic refraction velocity tomograms. To resolve this discrepancy, we jointly inverted the electromagnetic data for 4-layer models by including seismic depths to an interface between sedimentary units and to basement as explicit a priori constraints. We have also estimated the interconnected porosities, clay contents and pore-fluid resistivities of the sedimentary units from their electrical resistivities and seismic P-wave velocities using appropriate petrophysical models. In the interpretation of our preferred model, a shallow ∼40 m thick freshwater sandy aquifer with 85–100 Ohmm resistivity, 10–32 per cent interconnected porosity and <13 per cent clay content overlies a 105–115 m thick conductive sequence of clay and intercalated salt-water-saturated sands with 15–20 Ohmm total resistivity, 1−27 per cent interconnected porosity and 15–60 per cent clay content. A third ∼60 m thick sandy layer with 40–50 Ohmm resistivity, 10–33 per cent interconnected porosity and <15 per cent clay content is underlain by the basement with 3200–4000 Ohmm total resistivity. According to an interpretation of helicopter TEM data that cover the entire Okavango Delta and borehole logs, the second and third layers may represent lacustrine sediments from Paleo Lake Makgadikgadi and a moderately resistive freshwater aquifer comprising sediments of the recently proposed Paleo Okavango Megafan, respectively.
  •  
3.
  •  
4.
  • Hawkes, Jeffrey A., et al. (författare)
  • An international laboratory comparison of dissolved organic matter composition by high resolution mass spectrometry : Are we getting the same answer?
  • 2020
  • Ingår i: Limnology and Oceanography. - : Wiley. - 1541-5856. ; 18:6, s. 235-258
  • Tidskriftsartikel (refereegranskat)abstract
    • High-resolution mass spectrometry (HRMS) has become a vital tool for dissolved organic matter (DOM) characterization. The upward trend in HRMS analysis of DOM presents challenges in data comparison and interpretation among laboratories operating instruments with differing performance and user operating conditions. It is therefore essential that the community establishes metric ranges and compositional trends for data comparison with reference samples so that data can be robustly compared among research groups. To this end, four identically prepared DOM samples were each measured by 16 laboratories, using 17 commercially purchased instruments, using positive-ion and negative-ion mode electrospray ionization (ESI) HRMS analyses. The instruments identified similar to 1000 common ions in both negative- and positive-ion modes over a wide range of m/z values and chemical space, as determined by van Krevelen diagrams. Calculated metrics of abundance-weighted average indices (H/C, O/C, aromaticity and m/z) of the commonly detected ions showed that hydrogen saturation and aromaticity were consistent for each reference sample across the instruments, while average mass and oxygenation were more affected by differences in instrument type and settings. In this paper we present 32 metric values for future benchmarking. The metric values were obtained for the four different parameters from four samples in two ionization modes and can be used in future work to evaluate the performance of HRMS instruments.
  •  
5.
  • Karlsson, Johan, et al. (författare)
  • Laplace model for multi-axial responses in fatigue analysis of a cultivator frame
  • 2014
  • Ingår i: Proceedings of the 3rd International Commercial Vehicle Technology Symposium (CVT 2014). ; , s. 141-150, s. 141-150
  • Konferensbidrag (refereegranskat)abstract
    • This paper reviews means for fatigue damage rates estimation using Laplace distributed multiaxial loads. The model is suitable for description of stresses containing transients of random amplitudes and locations. Explicit formulas for computing the expected value of rainflow damage index as a function of excess kurtosis are given for correlated loads. A Laplace model is used to describe variability of forces and bending moments measured at some location on a cultivator frame. An example of actual cultivator data is used to illustrate the model and demonstrate the accuracy of damage index prediction.
  •  
6.
  • Meier, P., et al. (författare)
  • Hydrogeophysical investigations in the western and north-central Okavango Delta (Botswana) based on helicopter and ground-based transient electromagnetic data and electrical resistance tomography
  • 2014
  • Ingår i: Geophysics. - : Society of Exploration Geophysicists. - 0016-8033 .- 1942-2156. ; 79:5, s. B201-B211
  • Tidskriftsartikel (refereegranskat)abstract
    • The Okavango Delta is a huge alluvial megafan in northwestern Botswana. Despite numerous geologic, geochemical, geophysical, and hydrologic investigations over the past half-century, the sedimentary units underlying the delta are largely unknown. To address this issue, helicopter transient electromagnetic data (HTEM) have been collected across the entire delta and coincident ground-based electrical resistance tomographic (ERT) and transient electromagnetic (TEM) data have been acquired at two locations, one along the delta’s western margin and one in its north-central region. Inversions of the HTEM data have yielded three-layer resistivity models in which a relatively homogeneous conductive layer is sandwiched between two resistive layers. The three-layer HTEM model is reproduced in models obtained from independently and jointly inverting the ground-based data. The conductive layer’s low resistivities and depths to its upper and lower boundaries are practically equal in the HTEM and ground-based models. Resistivities of the upper resistive layer are similar in the various models, with the ground-based estimates being somewhat higher than those of the HTEM model at one site and somewhat lower at the other site. For the basal resistive layer, it can only be concluded that its resistivity must be substantially higher than that of the overlying conductive layer. An interpretation of the HTEM and ground-based resistivity models in the delta’s north-central region, appropriately constrained by the surface geology, high-resolution seismic refraction-reflection models, and borehole logs suggests the following structure: basement overlain at progressively shallower depths by freshwater-saturated sand and gravel that represent the remnants of a Paleo Okavango Megafan, saline-water-saturated sand, and lacustrine clay originally deposited in Paleo Lake Makgadikgadi, and freshwater-saturated megafan and fluvial sediments of the current Okavango Delta.
  •  
7.
  • Podgorski, Joel E., et al. (författare)
  • Integrated interpretation of helicopter and ground-based geophysical data recorded within the Okavango Delta, Botswana
  • 2015
  • Ingår i: Journal of Applied Geophysics. - : Elsevier BV. - 0926-9851 .- 1879-1859. ; 114, s. 52-67
  • Tidskriftsartikel (refereegranskat)abstract
    • Integration of information from the following sources has been used to produce a much better constrained and more complete four-unit geological/hydrological model of the Okavango Delta than previously available: (i) a 3D resistivity model determined from helicopter time-domain electromagnetic (HTEM) data recorded across most of the delta, (ii) 2D models and images derived from ground-based electrical resistance tomographic, transient electromagnetic, and high resolution seismic reflection/refraction tomographic data acquired at four selected sites in western and north-central regions of the delta, and (iii) geological details extracted from boreholes in northeastern and southeastern parts of the delta. The upper heterogeneous unit is the modern delta, which comprises extensive dry and freshwater-saturated sand and lesser amounts of clay and salt. It is characterized by moderate to high electrical resistivities and very low to low P-wave velocities. Except for images of several buried abandoned river channels, it is non-reflective. The laterally extensive underlying unit of low resistivities, low P-wave velocity, and subhorizontal reflectors very likely contains saline-water-saturated sands and clays deposited in the huge Paleo Lake Makgadikgadi (PLM), which once covered a 90,000 km(2) area that encompassed the delta, Lake Ngami, the Mababe Depression, and the Makgadikgadi Basin. Examples of PLM sediments are intersected in many boreholes. Low permeability clay within the PLM unit seems to be a barrier to the downward flow of the saline water. Below the PLM unit, freshwater-saturated sand of the Paleo Okavango Megafan (POM) unit is distinguished by moderate to high resistivities, low P-wave velocity, and numerous subhorizontal reflectors. The POM unit is interpreted to be the remnants of a megafan based on the arcuate nature of its front and the semi-conical shape of its upper surface in the HTEM resistivity model. Moderate to high resistivity subhorizontal layers are consistent with this interpretation. The deepest unit is the basement with very high resistivity, high P-wave velocity, and low or complex reflectivity. The interface between the POM unit and basement is a prominent seismic reflector. (C) 2015 Elsevier B.V. All rights reserved.
  •  
8.
  •  
9.
  • Podgorski, Joel E., et al. (författare)
  • Processing and inversion of commercial helicopter time-domain electromagnetic data for environmental assessments and geologic and hydrologic mapping
  • 2013
  • Ingår i: Geophysics. - 0016-8033 .- 1942-2156. ; 78:4, s. E149-E159
  • Tidskriftsartikel (refereegranskat)abstract
    • Helicopter time-domain electromagnetic (HTEM) surveying has historically been used for mineral exploration, but over the past decade it has started to be used in environmental assessments and geologic and hydrologic mapping. Such surveying is a cost-effective means of rapidly acquiring densely spaced data over large regions. At the same time, the quality of HTEM data can suffer from various inaccuracies. We developed an effective strategy for processing and inverting a commercial HTEM data set affected by uncertainties and systematic errors. The delivered data included early time gates contaminated by transmitter currents, noise in late time gates, and amplitude shifts between adjacent flights that appeared as artificial lineations in maps of the data and horizontal slices extracted from inversion models. Multiple processing steps were required to address these issues. Contaminated early time gates and noisy late time gates were semiautomatically identified and eliminated on a record-by-record basis. Timing errors between the transmitter and receiver electronics and inaccuracies in absolute amplitudes were corrected after calibrating selected HTEM data against data simulated from accurate ground-based TEM measurements. After editing and calibration, application of a quasi-3D spatially constrained inversion scheme significantly reduced the artificial lineations. Residual lineations were effectively eliminated after incorporating the transmitter and receiver altitudes and line-to-line amplitude factors in the inversion process. The final inverted model was very different from that generated from the original data provided by the contractor. For example, the average resistivity of the thick surface layer decreased from similar to 1800 to similar to 30 Omega m, the depths to the layer boundaries were reduced by 15%-23%, and the artificial lineations were practically eliminated. Our processing and inversion strategy is entirely general, such that with minor system-specific modifications it could be applied to any HTEM data set, including those recorded many years ago.
  •  
10.
  • Reiser, Fabienne, et al. (författare)
  • Constraining helicopter electromagnetic models of the Okavango Delta with seismic-refraction and seismic-reflection data
  • 2014
  • Ingår i: Geophysics. - 0016-8033 .- 1942-2156. ; 79:3, s. B123-B134
  • Tidskriftsartikel (refereegranskat)abstract
    • Electrical resistivity models derived from exceptionally high-quality helicopter transient electromagnetic data recorded across the Okavango Delta in Botswana, one of the world's great inland deltas or megafans, include three principal layers: (1) an upper heterogeneous layer of dry and water-saturated sand, (2) an intermediate electrically conductive layer that likely comprises saline-water-saturated sand and clay, and (3) a lower fan-shaped electrically resistive layer of freshwater-saturated sand/gravel and/or crystalline basement. If part of the lower layer comprises a freshwater aquifer, it would be evidence for a recently proposed Paleo Okavango Megafan and a major new source of freshwater. In an attempt to constrain the interpretation of the lower layer, we acquired two high-resolution seismic refraction and reflection data sets at each of two investigation sites: one near the center of the delta and one along its western edge. The interface between unconsolidated sediments and basement near the center of the delta is well defined by an similar to 1800 to similar to 4500 m/s increase in P-wave velocities, a change in seismic reflection facies, and a strong continuous reflection. This interface is about 45 m deeper than the top of the lower resistive layer, thus providing support for the Paleo Okavango Megafan hypothesis. Subhorizontal seismic reflectors are additional evidence for a sedimentary origin of the upper part of the lower resistive layer. In contrast to the observations at the delta's center, the interface between unconsolidated sediments and basement along its western edge, which is also defined by a similar to 1800 to similar to 4500 m/s increase in P-wave velocities and a continuous reflection, coincides with the top of the resistive layer.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy