SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Puska M.) "

Sökning: WFRF:(Puska M.)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Boyle, P, et al. (författare)
  • Need for global action for cancer control
  • 2008
  • Ingår i: Annals of oncology : official journal of the European Society for Medical Oncology. - : Elsevier BV. - 1569-8041. ; 19:9, s. 1519-1521
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
5.
  • Enkovaara, J., et al. (författare)
  • Electronic structure calculations with GPAW : a real-space implementation of the projector augmented-wave method
  • 2010
  • Ingår i: Journal of Physics. - : IOP Publishing. - 0953-8984 .- 1361-648X. ; 22:25, s. 253202-
  • Forskningsöversikt (refereegranskat)abstract
    • Electronic structure calculations have become an indispensable tool in many areas of materials science and quantum chemistry. Even though the Kohn-Sham formulation of the density-functional theory (DFT) simplifies the many-body problem significantly, one is still confronted with several numerical challenges. In this article we present the projector augmented-wave (PAW) method as implemented in the GPAW program package (https://wiki.fysik.dtu.dk/gpaw) using a uniform real-space grid representation of the electronic wavefunctions. Compared to more traditional plane wave or localized basis set approaches, real-space grids offer several advantages, most notably good computational scalability and systematic convergence properties. However, as a unique feature GPAW also facilitates a localized atomic-orbital basis set in addition to the grid. The efficient atomic basis set is complementary to the more accurate grid, and the possibility to seamlessly switch between the two representations provides great flexibility. While DFT allows one to study ground state properties, time-dependent density-functional theory (TDDFT) provides access to the excited states. We have implemented the two common formulations of TDDFT, namely the linear-response and the time propagation schemes. Electron transport calculations under finite-bias conditions can be performed with GPAW using non-equilibrium Green functions and the localized basis set. In addition to the basic features of the real-space PAW method, we also describe the implementation of selected exchange-correlation functionals, parallelization schemes, Delta SCF-method, x-ray absorption spectra, and maximally localized Wannier orbitals.
  •  
6.
  • Conley, Kevin M., et al. (författare)
  • Plasmon Excitations in Mixed Metallic Nanoarrays
  • 2019
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-086X .- 1936-0851. ; 13:5, s. 5344-5355
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2019 American Chemical Society. Features of the surface plasmon from macroscopic materials emerge in molecular systems, but differentiating collective excitations from single-particle excitations in molecular systems remains elusive. The rich interactions between single-particle electron-hole and collective electron excitations produce phenomena related to the chemical physics aspects within the atomic array. We study the plasmonic properties of atomic arrays of noble (Au, Ag, and Cu) and transition-metal (Pd, Pt) homonuclear chains using time-dependent density functional theory and their Kohn-Sham transition contributions. The response to the electromagnetic radiation is related to both the geometry-dependent confinement of sp-valence electrons and the energy position of d-electrons in the different atomic species and the hybridization between d and sp electrons. It is possible to tune the position of the plasmon resonance, split it into several peaks, and eventually achieve broadband absorption of radiation. Arrays of mixed noble and transition-metal chains may have strongly attenuated plasmonic behavior. The collective nature of the excitations is ascertained using their Kohn-Sham transition contributions. To manipulate the plasmonic response and achieve the desired properties for broad applications, it is vital to understand the origins of these phenomena in atomic chains and their arrays.
  •  
7.
  • Rossi, T. P., et al. (författare)
  • Kohn-Sham Decomposition in Real-Time Time-Dependent Density-Functional Theory: An Efficient Tool for Analyzing Plasmonic Excitations
  • 2017
  • Ingår i: Journal of Chemical Theory and Computation. - : American Chemical Society (ACS). - 1549-9626 .- 1549-9618. ; 13:10, s. 4779-4790
  • Tidskriftsartikel (refereegranskat)abstract
    • Electronic excitations can be efficiently analyzed in terms of the underlying Kohn-Sham (KS) electron-hole transitions. While such a decomposition is readily available in the linear-response time-dependent density-functional theory (TDDFT) approaches based on the Casida equations, a comparable analysis is less commonly conducted within the real-time-propagation TDDFT (RT-TDDFT). To improve this situation, we present here an implementation of a KS decomposition tool within the local-basis-set RT-TDDFT code in the free GPAW package. Our implementation is based on postprocessing of data that is readily available during time propagation, which is important for retaining the efficiency of the underlying RT-TDDFT to large systems. After benchmarking our implementation on small benzene derivatives by explicitly reconstructing the Casida eigenvectors from RT-TDDFT, we demonstrate the performance of the method by analyzing the plasmon resonances of icosahedral silver nanoparticles up to Ag-561. The method provides a clear description of the splitting of the plasmon in small nanoparticles due to individual single-electron transitions as well as the formation of a distinct d-electron-screened plasmon resonance in larger nanoparticles.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy