SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Robertson Tony) "

Sökning: WFRF:(Robertson Tony)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gardner, Michael, et al. (författare)
  • Gender and telomere length : Systematic review and meta-analysis
  • 2014
  • Ingår i: Experimental Gerontology. - : Elsevier. - 0531-5565 .- 1873-6815. ; 51, s. 15-27
  • Forskningsöversikt (refereegranskat)abstract
    • Background: It is widely believed that females have longer telomeres than males, although results from studies have been contradictory. Methods: We carried out a systematic review and meta-analyses to test the hypothesis that in humans, females have longer telomeres than males and that this association becomes stronger with increasing age. Searches were conducted in EMBASE and MEDLINE (by November 2009) and additional datasets were obtained from study investigators. Eligible observational studies measured telomeres for both females and males of any age, had a minimum sample size of 100 and included participants not part of a diseased group. We calculated summary estimates using random-effects meta-analyses. Heterogeneity between studies was investigated using sub-group analysis and meta-regression. Results: Meta-analyses from 36 cohorts (36,230 participants) showed that on average females had longer telomeres than males (standardised difference in telomere length between females and males 0.090, 95% CI 0.015, 0.166; age-adjusted). There was little evidence that these associations varied by age group (p = 1.00) or cell type (p = 0.29). However, the size of this difference did vary by measurement methods, with only Southern blot but neither real-time PCR nor Flow-FISH showing a significant difference. This difference was not associated with random measurement error. Conclusions: Telomere length is longer in females thanmales, although this difference was not universally found in studies that did not use Southern blot methods. Further research on explanations for the methodological differences is required. (C) 2013 Published by Elsevier Inc.
  •  
2.
  • Lango Allen, Hana, et al. (författare)
  • Hundreds of variants clustered in genomic loci and biological pathways affect human height.
  • 2010
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 467:7317, s. 832-8
  • Tidskriftsartikel (refereegranskat)abstract
    • Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.
  •  
3.
  • Richards, Stephen, et al. (författare)
  • The genome of the model beetle and pest Tribolium castaneum.
  • 2008
  • Ingår i: Nature. - 1476-4687. ; 452:7190, s. 949-55
  • Tidskriftsartikel (refereegranskat)abstract
    • Tribolium castaneum is a representative of earth’s most numerous eukaryotic order, a powerful model organism for the study of generalized insect development, and also an important pest of stored agricultural products. We describe its genome sequence here. This omnivorous beetle has evolved an ability to interact with a diverse chemical environment as evidenced by large expansions in odorant and gustatory receptors, as well as p450 and other detoxification enzymes. Developmental patterns in Tribolium are more representative of other arthropods than those found in Drosophila, a fact represented in gene content and function. For one, Tribolium has retained more ancestral genes involved in cell-cell communication than Drosophila, and some are expressed in the growth zone crucial for axial elongation in short germ development. Systemic RNAi in T. castaneum appears to use mechanisms distinct from those found in C. elegans, but nevertheless offers similar power for the elucidation of gene function and identification of targets for selective insect control.
  •  
4.
  • Zhao, Chaoyang, et al. (författare)
  • A massive expansion of effector genes underlies gall-formation in the wheat pest Mayetiola destructor
  • 2015
  • Ingår i: Current Biology. - : Elsevier BV. - 1879-0445 .- 0960-9822. ; 25:5, s. 613-620
  • Tidskriftsartikel (refereegranskat)abstract
    • Gall-forming arthropods are highly specialized herbivores that, in combination with their hosts, produce extended phenotypes with unique morphologies [1]. Many are economically important, and others have improved our understanding of ecology and adaptive radiation [2]. However, the mechanisms that these arthropods use to induce plant galls are poorly understood. We sequenced the genome of the Hessian fly (Mayetiola destructor; Diptera: Cecidomyiidae), a plant parasitic gall midge and a pest of wheat (Triticum spp.), with the aim of identifying genic modifications that contribute to its plant-parasitic lifestyle. Among several adaptive modifications, we discovered an expansive reservoir of potential effector proteins. Nearly 5% of the 20,163 predicted gene models matched putative effector gene transcripts present in the M. destructor larval salivary gland. Another 466 putative effectors were discovered among the genes that have no sequence similarities in other organisms. The largest known arthropod gene family (family SSGP-71) was also discovered within the effector reservoir. SSGP-71 proteins lack sequence homologies to other proteins, but their structures resemble both ubiquitin E3 ligases in plants and E3-ligase-mimicking effectors in plant pathogenic bacteria. SSGP-71 proteins and wheat Skp proteins interact in vivo. Mutations in different SSGP-71 genes avoid the effector-triggered immunity that is directed by the wheat resistance genes H6 and H9. Results point to effectors as the agents responsible for arthropod-induced plant gall formation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy