SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rodhe Henning Professor) "

Sökning: WFRF:(Rodhe Henning Professor)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Karlsson, Johannes, 1978- (författare)
  • The influence of clouds on Earth's radiation budget in global climate models
  • 2009
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Considering the high sensitivity of climate to changes in cloudiness, the way clouds might change in a perturbed climate is important for the total temperature response. In fact, the cloud feedback has been identified as the main uncertainty in future projections, as simulated by global climate models. To increase the confidence of future scenario simulations it is necessary, although not sufficient, that the models manage to represent the present-day climate in a realistic manner. We compare the simulations of cloudiness to available observations in the marine subtropics and the Arctic, two regions in which changes in cloudiness are believed to have large impact on the climate. In terms of the annual cycle of Arctic cloud properties, climate models show large disagreement with each other and with observations. There exists a tentative across-model relationship, such that models with higher amounts of clouds in the winter are also associated with larger surface cloud forcing. However, across-model differences in the wintertime surface cloud forcing cannot explain differences in the simulated surface temperatures. Rather, we identify across-model differences in temperature and moisture properties of the air entering the Arctic region to be of greater importance. We find that climate models in general underestimate the amount of low clouds in the marine subtropics but still overestimate the regional averaged cloud radiative cooling. As a consequence we suggest that models are likely to overestimate the radiative response to changes in the cloudiness. We also demonstrate the potential of satellite derived cloud top heights to be used as model diagnostics in the climatologically important transition from stratus-topped to cumulus-topped marine boundary layers in the subtropics.  
  •  
2.
  • Bender, Frida A-M, 1978- (författare)
  • Earth's albedo in a changing climate
  • 2009
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The albedo is a key parameter in the radiative budget of the Earth and a primary determinant of the planetary temperature and is therefore also central to questions regarding climate stability, climate change and climate sensitivity. Climate models and satellite observations are essential for studying the albedo, and the parameters determining it, on large spatial and temporal scales. Although climate models are able to capture the large-scale characteristics of the albedo, a bias is found between modelled and observed global albedo estimates, and on a regional scale particular problematic regions can be identified. Cloud parameters, that are of great importance for determining the albedo, vary widely among models, but lack of observations makes constraining models, and even evaluating models, difficult. The freedom of variability for cloud parameters can be used to make models agree with observations of the better constrained radiative budget. It is shown that tuning a model to different radiative budget estimates by altering cloud parameters can influence the climate sensitivity of the model, but the effect seen is small, compared to the range of climate sensitivities estimated by different models. Despite their different parameterizations of clouds, aerosols etc., models do have fundamental features in common, which can further the understanding of the real climate system. For instance it is found that sensitivity to volcanic forcing is related to climate sensitivity in an ensemble of models. If this relation is valid for the real climate as well, observations of the volcanic sensitivity can help restrict the climate sensitivity. The range of climate sensitivity estimates in models can largely be attributed to variations in cloud response to forcing. It is found that in models with high climate sensitivity changes in cloud cover and cloud reflectivity enhance a positive radiative forcing due to increased CO2 concentrations, feeding back on the warming and in models with low climate sensitivity, cloud response counteracts the positive radiative forcing and warming induced by the same forcing. As a consequence the total albedo response to increased CO2 forcing is found to be stronger (more negative) in high sensitivity models and vice versa. Cloud albedo and its variation between different cloud regimes, is important in this regard, yet not well known. A method based on the relation between cloud fraction and albedo is presented, giving a way to estimate regional cloud albedo, primarily for homogeneous cloud regimes, but possibly also extended to a global scale.  
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy