SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ronnemaa T) "

Sökning: WFRF:(Ronnemaa T)

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Virtanen, KA, et al. (författare)
  • Differential effects of rosiglitazone and metformin on adipose tissue distribution and glucose uptake in type 2 diabetic subjects
  • 2003
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 52:2, s. 283-290
  • Tidskriftsartikel (refereegranskat)abstract
    • We evaluated the effects of rosiglitazone (4 mg b.i.d.) and metformin (1 g b.i.d.) monotherapy for 26 weeks on adipose tissue insulin-stimulated glucose uptake in patients (n = 41) with type 2 diabetes. Before and after the treatment, glucose uptake was measured using 2-[18F]fluoro-2-deoxyglucose and positron emission tomography and adipose tissue masses were quantified using magnetic resonance imaging. Rosiglitazone improved insulin-stimulated whole-body glucose uptake by 44% (P < 0.01 vs. placebo). Mean body weight was unchanged in the rosiglitazone group, while it decreased by 2.0 kg in the metformin group (P < 0.05 vs. placebo). In visceral adipose tissue, glucose uptake increased by 29% (from 17.8 ± 2.0 to 23.0 ± 2.6 μmol · kg−1 · min−1, P < 0.05 vs. placebo) in the rosiglitazone group but to a lesser extent (17%) in the metformin group (from 16.2 ± 1.5 to 18.9 ± 1.7 μmol · kg−1 · min−1, P < 0.05 vs. baseline). Because the visceral adipose tissue mass simultaneously decreased with both treatments (P < 0.05), no change was observed in total visceral glucose uptake per depot. Rosiglitazone significantly enhanced glucose uptake in the femoral subcutaneous area, either when expressed per tissue mass (from 10.8 ± 1.2 to 17.1 ± 1.7 μmol · kg−1 · min−1, P < 0.01 vs. placebo) or per whole-fat depot (P < 0.05 vs. placebo). In conclusion, metformin treatment resulted in improvement of glycemic control without enhancement of peripheral insulin sensitivity. The improved insulin sensitivity of the nonabdominal subcutaneous adipose tissue during treatment with rosiglitazone partly explains the enhanced whole-body insulin sensitivity and underlies the central role of adipose tissue for action of peroxisome proliferator-activated receptor γ agonist in vivo.
  •  
3.
  • Hallsten, K, et al. (författare)
  • Rosiglitazone but not metformin enhances insulin- and exercise-stimulated skeletal muscle glucose uptake in patients with newly diagnosed type 2 diabetes
  • 2002
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 51:12, s. 3479-3485
  • Tidskriftsartikel (refereegranskat)abstract
    • Rosiglitazone, a thiazolidinedione, enhances peripheral insulin sensitivity in patients with type 2 diabetes. Because the synergic action of insulin and exercise has been shown to be decreased in insulin resistance, the aim of this study was to compare the effects of rosiglitazone and metformin on muscle insulin responsiveness at rest and during exercise in patients with type 2 diabetes. Therefore, 45 patients with newly diagnosed or diet-treated type 2 diabetes were randomized for treatment with rosiglitazone (4 mg b.i.d.), metformin (1 g b.i.d.), or placebo in a 26-week double-blind trial. Skeletal muscle glucose uptake was measured using fluorine-18-labeled fluoro-deoxy-glucose and positron emission tomography (PET) during euglycemic-hyperinsulinemic clamp and one-legged exercise before and after the treatment period. Rosiglitazone (P < 0.05) and metformin (P < 0.0001) treatment lowered the mean glycosylated hemoglobin. The skeletal muscle glucose uptake was increased by 38% (P < 0.01) and whole-body glucose uptake by 44% in the rosiglitazone group. Furthermore, the exercise-induced increment during insulin stimulation was enhanced by 99% (P < 0.0001). No changes were observed in skeletal muscle or whole-body insulin sensitivity in the metformin group. In conclusion, rosiglitazone but not metformin 1) improves insulin responsiveness in resting skeletal muscle and 2) doubles the insulin-stimulated glucose uptake rate during physical exercise in patients with type 2 diabetes. Our results suggest that rosiglitazone improves synergic action of insulin and exercise.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Hammar, N., et al. (författare)
  • Migration and differences in dietary habits : a cross sectional study of Finnish twins in Sweden
  • 2009
  • Ingår i: European Journal of Clinical Nutrition. - : Springer Science and Business Media LLC. - 0954-3007 .- 1476-5640. ; Oct 17
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: To compare dietary habits between Finnish twin migrants to Sweden and their co-twins always living in Finland, and to analyse how migration influenced food consumption patterns in the migrants. Subjects/Methods: Same-sexed twin pairs born in Finland below 75 years of age, with at least one twin migrating to Sweden(n=1083 pairs). Dietary habits were assessed by a food frequency questionnaire included in a comprehensive mailed questionnaire (response rate 71%). For 76 male twin pairs, information was also collected by a dietary history interview inquiring the habitual diet during the previous year. Results: Migrant twins in Sweden had a lower intake of typical Finnish foods like dark bread and berries, and an increased consumption of fresh fruit compared with co-twins living in Finland. The migrants consumed less potatoes and more rice and pasta. Sweet pastries were consumed less often by the migrants and they also tended to more often cut out visible fat of meat and on the other hand add salt to dishes. Among men the migrants had a lower alcohol intake than their co-twins living in Finland. Conclusions: Migration from Finland to Sweden is associated with differences in the food pattern that reflect population differences in eating habits between the two countries. The differences include a reduced consumption of typical Finnish foods like dark bread and berries and are of bidirectional nature from the point of view of cardiovascular health.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy