SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ryme Jessica) "

Sökning: WFRF:(Ryme Jessica)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ryme, Jessica, et al. (författare)
  • Variations in the Composition of Mammalian SWI/SNF Chromatin Remodelling Complexes
  • 2009
  • Ingår i: Journal of Cellular Biochemistry. - : Wiley. - 0730-2312 .- 1097-4644. ; 108:3, s. 565-576
  • Tidskriftsartikel (refereegranskat)abstract
    • The ATP-dependent chromatin remodelling complexes SWI/SNF alter the chromatin structure in transcriptional regulation. Several classes of mammalian SWI/SNF complex have been isolated biochemically, distinguished by a few specific subunits, such as the BAF-specific BAF250A, BAF250B and BRM, and the PBAF-specific BAF 180. We have determined the complex compositions using low stringency immunoprecipitation (IP) and shown that the pattern of subunit interactions was more diverse than previously defined classes had predicted. The subunit association at five gene promoters that depend on the SWI/SNF activity varied and the sequential chromatin immunoprecipitations revealed that different class-specific subunits occupied the promoters at the same time. The low-stringency IP showed that the BAF-specific BAF250A and BAF250B and the PBAF-specific BAF180 co-exist in a subset of SWI/SNF complexes, and fractionation of nuclear extract on size-exclusion chromatography demonstrated that sub-complexes with unorthodox subunit compositions were present in the cell. We propose a model in which the constellations of SWI/SNF complexes are ""tailored"" for each specific chromatin target and depend on the local chromatin environment to which complexes and sub-complexes are recruited.
  •  
2.
  • Tyagi, Anu, et al. (författare)
  • SWI/SNF Associates with Nascent Pre-mRNPs and Regulates Alternative Pre mRNA Processing
  • 2009
  • Ingår i: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 5:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The SWI/SNF chromatin remodeling complexes regulate the transcription of many genes by remodeling nucleosomes at promoter regions. In Drosophila, SWI/SNF plays an important role in ecdysone-dependent transcription regulation. Studies in human cells suggest that Brahma (Brm), the ATPase subunit of SWI/SNF, regulates alternative pre-mRNA splicing by modulating transcription elongation rates. We describe, here, experiments that study the association of Brm with transcribed genes in Chironomus tentans and Drosophila melanogaster, the purpose of which was to further elucidate the mechanisms by which Brm regulates pre-mRNA processing. We show that Brm becomes incorporated into nascent Balbiani ring pre-mRNPs co-transcriptionally and that the human Brm and Brg1 proteins are associated with RNPs. We have analyzed the expression profiles of D. melanogaster S2 cells in which the levels of individual SWI/SNF subunits have been reduced by RNA interference, and we show that depletion of SWI/SNF core subunits changes the relative abundance of alternative transcripts from a subset of genes. This observation, and the fact that a fraction of Brm is not associated with chromatin but with nascent pre-mRNPs, suggest that SWI/SNF affects pre-mRNA processing by acting at the RNA level. Ontology enrichment tests indicate that the genes that are regulated post-transcriptionally by SWI/SNF are mostly enzymes and transcription factors that regulate postembryonic developmental processes. In summary, the data suggest that SWI/SNF becomes incorporated into nascent pre-mRNPs and acts post-transcriptionally to regulate not only the amount of mRNA synthesized from a given promoter but also the type of alternative transcript produced.
  •  
3.
  • Vizlin-Hodzic, Dzeneta, et al. (författare)
  • Developmental studies of Xenopus shelterin complexes: the message to reset telomere length is already present in the egg
  • 2009
  • Ingår i: FASEB Journal. - : Wiley. - 0892-6638 .- 1530-6860. ; 23:8, s. 2587-2594
  • Tidskriftsartikel (refereegranskat)abstract
    • The 6-protein complex shelterin protects the telomeres of human chromosomes. The recent discovery that telomeres are important for epigenetic gene regulation and vertebrate embryonic development calls for the establishment of model organisms to study shelterin and telomere function under normal developmental conditions. Here, we report the sequences of the shelterin-encoding genes in Xenopus laevis and its close relation Xenopus tropicalis. In vitro expression and biochemical characterization of the Xenopus shelterin proteins TRF1, TRF2, POT1, TIN2, RAP1, TPP1, and the shelterin accessory factor PINX1 indicate that all main functions of their human orthologs are conserved in Xenopus. The XlTRF1 and XtTRF1 proteins bind double-stranded telomeric DNA sequence specifically and interact with XlTIN2 and XtTIN2, respectively. Similarly, the XlTRF2 and XtTRF2 proteins bind double-stranded telomeric DNA and interact with XlRAP1 and XtRAP1, respectively, whereas the XlPOT1 and XtPOT1 proteins bind single stranded telomeric DNA. Real-time PCR further reveals the gene expression profiles for telomerase and the shelterin genes during embryogenesis. Notably, the composition of shelterin and the formation of its subcomplexes appear to be temporally regulated during embryonic development. Moreover, unexpectedly high telomerase and shelterin gene expression during early embryogenesis may reflect a telomere length resetting mechanism, similar to that reported for induced pluripotent stem cells and for animals cloned through somatic nuclear transfer.
  •  
4.
  • Vizlin-Hodzic, Dzeneta, et al. (författare)
  • SAF-A Forms a Complex with BRG1 and Both Components Are Required for RNA Polymerase II Mediated Transcription
  • 2011
  • Ingår i: PLOS ONE. - 1932-6203. ; 6:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Scaffold attachment factor A (SAF-A) participates in the regulation of gene expression by organizing chromatin into transcriptionally active domains and by interacting directly with RNA polymerase II. Methodology: Here we use co-localization, co-immunoprecipitation (co-IP) and in situ proximity ligation assay (PLA) to identify Brahma Related Gene 1 (BRG1), the ATP-driven motor of the human SWI-SNF chromatin remodeling complex, as another SAF-A interaction partner in mouse embryonic stem (mES) cells. We also employ RNA interference to investigate functional aspects of the SAF-A/BRG1 interaction. Principal Findings: We find that endogenous SAF-A protein interacts with endogenous BRG1 protein in mES cells, and that the interaction does not solely depend on the presence of mRNA. Moreover the interaction remains intact when cells are induced to differentiate. Functional analyses reveal that dual depletion of SAF-A and BRG1 abolishes global transcription by RNA polymerase II, while the nucleolar RNA polymerase I transcription machinery remains unaffected. Conclusions: We demonstrate that SAF-A interacts with BRG1 and that both components are required for RNA Polymerase II Mediated Transcription.
  •  
5.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy