SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Söderström Pär Anders 1980 ) "

Sökning: WFRF:(Söderström Pär Anders 1980 )

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Grawe, H., et al. (författare)
  • The (6+) isomer in 102Sn revisited : Neutron and proton effective charges close to the double shell closure
  • 2021
  • Ingår i: Physics Letters B. - : Elsevier. - 0370-2693 .- 1873-2445. ; 820
  • Tidskriftsartikel (refereegranskat)abstract
    • In a high-energy fragmentation experiment at GSI an Iπ = (6+) isomer and its γ-decay are identified in 102Sn, the two-neutron neighbour of the doubly-magic 100Sn. Its half-life is measured to be T1/2 = 367(11) ns. The possible existence of further isomers is discussed in the framework of large-scale shell model (LSSM) calculations including up to five particle-hole excitations of the 100Sn core. From the precise B(E2; 6+ → 4+) strength and the recently remeasured value for B(E2; 8+ → 6+) in the two-proton hole neighbour 98Cd effective E2 polarization charges for protons and neutrons were inferred including LSSM corrections within the full N=4 0hω space. The results are discussed in comparison to predicted and empirically determined effective operators.
  •  
2.
  • Hadynska-Klek, K., et al. (författare)
  • Quadrupole collectivity in Ca-42 from low-energy Coulomb excitation with AGATA
  • 2018
  • Ingår i: Physical Review C. - : AMER PHYSICAL SOC. - 2469-9985 .- 2469-9993. ; 97:2
  • Tidskriftsartikel (refereegranskat)abstract
    • ACoulomb-excitation experiment to study electromagnetic properties of Ca-42 was performed using a 170-MeV calcium beam from the TANDEM XPU facility at INFN Laboratori Nazionali di Legnaro. gamma rays from excited states in Ca-42 were measured with the AGATA spectrometer. The magnitudes and relative signs of ten E2 matrix elements coupling six low-lying states in Ca-42, including the diagonal E2 matrix elements of 2(1)(+) and 2(2)(+) states, were determined using the least-squares code GOSIA. The obtained set of reduced E2 matrix elements was analyzed using the quadrupole sum rule method and yielded overall quadrupole deformation for 0(1),(+)(2) and 2(1,2)(+) states, as well as triaxiality for 0(1,2)(+) states, establishing the coexistence of a weakly deformed ground-state band and highly deformed slightly triaxial sideband in Ca-42. The experimental results were compared with the state-of-the-art large-scale shell-model and beyond-mean-field calculations, which reproduce well the general picture of shape coexistence in Ca-42.
  •  
3.
  •  
4.
  •  
5.
  • Söderström, Pär-Anders, 1980- (författare)
  • Collective Structure of Neutron-Rich Rare-Earth Nuclei and Development of Instrumentation for Gamma-Ray Spectroscopy
  • 2011
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Neutron-rich rare-earth nuclei are among the most collective nuclei that can be found in nature. In particular, the doubly mid-shell nucleus 170Dy is expected to be the nucleus where the collective structure is maximized. This has implications for the astrophysical r-process, since it has been suggested that the collectivity maximum plays an important role in the abundances of the rare-earth elements that are created in supernova explosions. In this work, the collective structure of the five nuclei 168,170Dy and 167,168,169Ho are studied and different theoretical models are used to interpret the evolution of collectivity around the mid-shell. In order to produce and study even more neutron-rich nuclei in this mass region, new radioactive ion beam facilities will be a valuable tool. These facilities, however, require advanced instruments to study the weak signals of exotic nuclei in a high background environment. Two of these instruments are the γ-ray tracking spectrometer AGATA and the neutron detector array NEDA. For AGATA to work satisfactorily, the interaction position of the gamma rays must be determined with an accuracy of at least five millimetres. The position resolution is measured in this work using a model independent method based on the Doppler correction capabilities of the detector at two different distances between the detector and the source. For NEDA, one of the critical parameters is its ability to discriminate between neutrons and γ rays. By using digital electronics it is possible to employ advanced and efficient algorithms for pulse-shape discrimination. In this work, digital versions of the common analogue methods are shownto give as good, or better, results compared to the ones obtained using analogue electronics. Another method which effectively distinguishes between neutrons and γ rays is based on artificial neural networks. This method is also investigated in this work and is shown to yield even better results.
  •  
6.
  • Söderström, Pär-Anders, 1980-, et al. (författare)
  • Neutron detection and gamma-ray suppression using artificial neural networks with the liquid scintillators BC-501A and BC-537
  • 2019
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : ELSEVIER SCIENCE BV. - 0168-9002 .- 1872-9576. ; 916, s. 238-245
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work we present a comparison between the two liquid scintillators BC-501A and BC-537 in terms of their performance regarding the pulse-shape discrimination between neutrons and gamma rays. Special emphasis is put on the application of artificial neural networks. The results show a systematically higher gamma-ray rejection ratio for BC-501A compared to BC-537 applying the commonly used charge comparison method. Using the artificial neural network approach the discrimination quality was improved to more than 95% rejection efficiency of gamma rays over the energy range 150 to 1000 keV for both BC-501A and BC-537. However, due to the larger light output of BC-501A compared to BC-537, neutrons could be identified in BC-501A using artificial neural networks down to a recoil proton energy of 800 keV compared to a recoil deuteron energy of 1200 keV for BC-537. We conclude that using artificial neural networks it is possible to obtain the same gamma-ray rejection quality from both BC-501A and BC-537 for neutrons above a low-energy threshold. This threshold is, however, lower for BC-501A, which is important for nuclear structure spectroscopy experiments of rare reaction channels where low-energy interactions dominates.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy