SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Schwartz Thue W) "

Sökning: WFRF:(Schwartz Thue W)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hamann, Joerg, et al. (författare)
  • International Union of Basic and Clinical Pharmacology. XCIV. Adhesion G Protein-Coupled Receptors
  • 2015
  • Ingår i: Pharmacological Reviews. - : American Society for Pharmacology & Experimental Therapeutics (ASPET). - 0031-6997 .- 1521-0081. ; 67:2, s. 338-367
  • Forskningsöversikt (refereegranskat)abstract
    • The Adhesion family forms a large branch of the pharmacologically important superfamily of G protein-coupled receptors (GPCRs). As Adhesion GPCRs increasingly receive attention from a wide spectrum of biomedical fields, the Adhesion GPCR Consortium, together with the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification, proposes a unified nomenclature for Adhesion GPCRs. The new names have ADGR as common dominator followed by a letter and a number to denote each subfamily and subtype, respectively. The new names, with old and alternative names within parentheses, are: ADGRA1 (GPR123), ADGRA2 (GPR124), ADGRA3 (GPR125), ADGRB1 (BAI1), ADGRB2 (BAI2), ADGRB3 (BAI3), ADGRC1 (CELSR1), ADGRC2 (CELSR2), ADGRC3 (CELSR3), ADGRD1 (GPR133), ADGRD2 (GPR144), ADGRE1 (EMR1, F4/80), ADGRE2 (EMR2), ADGRE3 (EMR3), ADGRE4 (EMR4), ADGRE5 (CD97), ADGRF1 (GPR110), ADGRF2 (GPR111), ADGRF3 (GPR113), ADGRF4 (GPR115), ADGRF5 (GPR116, Ig-Hepta), ADGRG1 (GPR56), ADGRG2 (GPR64, HE6), ADGRG3 (GPR97), ADGRG4 (GPR112), ADGRG5 (GPR114), ADGRG6 (GPR126), ADGRG7 (GPR128), ADGRL1 (latrophilin-1, CIRL-1, CL1), ADGRL2 (latrophilin-2, CIRL-2, CL2), ADGRL3 (latrophilin-3, CIRL-3, CL3), ADGRL4 (ELTD1, ETL), and ADGRV1 (VLGR1, GPR98). This review covers all major biologic aspects of Adhesion GPCRs, including evolutionary origins, interaction partners, signaling, expression, physiologic functions, and therapeutic potential.
  •  
2.
  • Meijnikman, A. S., et al. (författare)
  • Hyperinsulinemia Is Highly Associated With Markers of Hepatocytic Senescence in Two Independent Cohorts
  • 2022
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 71:9, s. 1929-1936
  • Tidskriftsartikel (refereegranskat)abstract
    • Cellular senescence is an essentially irreversible growth arrest that occurs in response to various cellular stressors and may contribute to development of type 2 diabetes mellitus and nonalcoholic fatty liver disease (NAFLD). In this article, we investigated whether chronically elevated insulin levels are associated with cellular senescence in the human liver. In 107 individuals undergoing bariatric surgery, hepatic senescence markers were assessed by immunohistochemistry as well as transcriptomics. A subset of 180 participants from the ongoing Finnish Kuopio OBesity Surgery (KOBS) study was used as validation cohort. We found plasma insulin to be highly associated with various markers of cellular senescence in liver tissue. The liver transcriptome of individuals with high insulin revealed significant upregulation of several genes associated with senescence: p21, TGFβ, PI3K, HLA-G, IL8, p38, Ras, and E2F. Insulin associated with hepatic senescence independently of NAFLD and plasma glucose. By using transcriptomic data from the KOBS study, we could validate the association of insulin with p21 in the liver. Our results support a potential role for hyperinsulinemia in induction of cellular senescence in the liver. These findings suggest possible benefits of lowering insulin levels in obese individuals with insulin resistance.
  •  
3.
  • Mikkelsen, Randi Bonke, et al. (författare)
  • Type 2 diabetes is associated with increased circulating levels of 3-hydroxydecanoate activating GPR84 and neutrophil migration
  • 2022
  • Ingår i: iScience. - : Elsevier BV. - 2589-0042. ; 25:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Obesity and diabetes are associated with inflammation and altered plasma levels of several metabolites, which may be involved in disease progression. Some metabolites can activate G protein-coupled receptors (GPCRs) expressed on immune cells where they can modulate metabolic inflammation. Here, we find that 3-hydroxydecanoate is enriched in the circulation of obese individuals with type 2 diabetes (T2D) compared with nondiabetic controls. Administration of 3-hydroxydecanoate to mice promotes immune cell recruitment to adipose tissue, which was associated with adipose inflammation and increased fasting insulin levels. Furthermore, we demonstrate that 3-hydroxydecanoate stimulates migration of primary human and mouse neutrophils, but not monocytes, through GPR84 and Gαi signaling in vitro. Our findings indicate that 3-hydroxydecanoate is a T2D-associated metabolite that increases inflammatory responses and may contribute to the chronic inflammation observed in diabetes.
  •  
4.
  • Araç, Demet, et al. (författare)
  • Dissecting signaling and functions of adhesion G protein-coupled receptors
  • 2012
  • Ingår i: Annals of the New York Academy of Sciences. - : Wiley. - 0077-8923 .- 1749-6632. ; 1276:1, s. 1-25
  • Tidskriftsartikel (refereegranskat)abstract
    • G protein-coupled receptors (GPCRs) comprise an expanded superfamily of receptors in the human genome. Adhesion class G protein-coupled receptors (adhesion-GPCRs) form the second largest class of GPCRs. Despite the abundance, size, molecular structure, and functions in facilitating cell and matrix contacts in a variety of organ systems, adhesion-GPCRs are by far the most poorly understood GPCR class. Adhesion-GPCRs possess a unique molecular structure, with extended N-termini containing various adhesion domains. In addition, many adhesion-GPCRs are autoproteolytically cleaved into an N-terminal fragment (NTF, NT, α-subunit) and C-terminal fragment (CTF, CT, β-subunit) at a conserved GPCR autoproteolysis-inducing (GAIN) domain that contains a GPCR proteolysis site (GPS). These two features distinguish adhesion-GPCRs from other GPCR classes. Though active research on adhesion-GPCRs in diverse areas, such as immunity, neuroscience, and development and tumor biology has been intensified in the recent years, the general biological and pharmacological properties of adhesion-GPCRs are not well known, and they have not yet been used for biomedical purposes. The "6th International Adhesion-GPCR Workshop," held at the Institute of Physiology of the University of Würzburg on September 6-8, 2012, assembled a majority of the investigators currently actively pursuing research on adhesion-GPCRs, including scientists from laboratories in Europe, the United States, and Asia. The meeting featured the nascent mechanistic understanding of the molecular events driving the signal transduction of adhesion-GPCRs, novel models to evaluate their functions, and evidence for their involvement in human disease.
  •  
5.
  • Egerod, Kristoffer L, et al. (författare)
  • A Major Lineage of Enteroendocrine Cells Coexpress CCK, Secretin, GIP, GLP-1, PYY, and Neurotensin but Not Somatostatin.
  • 2012
  • Ingår i: Endocrinology. - : The Endocrine Society. - 0013-7227 .- 1945-7170.
  • Tidskriftsartikel (refereegranskat)abstract
    • Enteroendocrine cells such as duodenal cholecystokinin (CCK cells) are generally thought to be confined to certain segments of the gastrointestinal (GI) tract and to store and release peptides derived from only a single peptide precursor. In the current study, however, transgenic mice expressing enhanced green fluorescent protein (eGFP) under the control of the CCK promoter demonstrated a distribution pattern of CCK-eGFP positive cells that extended throughout the intestine. Quantitative PCR and liquid chromatography-mass spectrometry proteomic analyses of isolated, FACS-purified CCK-eGFP-positive cells demonstrated expression of not only CCK but also glucagon-like peptide 1 (GLP-1), gastric inhibitory peptide (GIP), peptide YY (PYY), neurotensin, and secretin, but not somatostatin. Immunohistochemistry confirmed this expression pattern. The broad coexpression phenomenon was observed both in crypts and villi as demonstrated by immunohistochemistry and FACS analysis of separated cell populations. Single-cell quantitative PCR indicated that approximately half of the duodenal CCK-eGFP cells express one peptide precursor in addition to CCK, whereas an additional smaller fraction expresses two peptide precursors in addition to CCK. The coexpression pattern was further confirmed through a cell ablation study based on expression of the human diphtheria toxin receptor under the control of the proglucagon promoter, in which activation of the receptor resulted in a marked reduction not only in GLP-1 cells, but also PYY, neurotensin, GIP, CCK, and secretin cells, whereas somatostatin cells were spared. Key elements of the coexpression pattern were confirmed by immunohistochemical double staining in human small intestine. It is concluded that a lineage of mature enteroendocrine cells have the ability to coexpress members of a group of functionally related peptides: CCK, secretin, GIP, GLP-1, PYY, and neurotensin, suggesting a potential therapeutic target for the treatment and prevention of diabetes and obesity.
  •  
6.
  • Egerod, Kristoffer L., et al. (författare)
  • beta-Cell Specific Overexpression of GPR39 Protects against Streptozotocin-Induced Hyperglycemia
  • 2011
  • Ingår i: International Journal of Endocrinology. - : Hindawi Limited. - 1687-8337 .- 1687-8345.
  • Tidskriftsartikel (refereegranskat)abstract
    • Mice deficient in the zinc-sensor GPR39, which has been demonstrated to protect cells against endoplasmatic stress and cell death in vitro, display moderate glucose intolerance and impaired glucose-induced insulin secretion. Here, we use the Tet-On system under the control of the proinsulin promoter to selectively overexpress GPR39 in the beta cells in a double transgenic mouse strain and challenge them with multiple low doses of streptozotocin, which in the wild-type littermates leads to a gradual increase in nonfasting glucose levels and glucose intolerance observed during both food intake and OGTT. Although the overexpression of the constitutively active GPR39 receptor in animals not treated with streptozotocin appeared by itself to impair the glucose tolerance slightly and to decrease the beta-cell mass, it nevertheless totally protected against the gradual hyperglycemia in the steptozotocin-treated animals. It is concluded that GPR39 functions in a beta-cell protective manner and it is suggested that it is involved in some of the beneficial, beta-cell protective effects observed for Zn(++) and that GPR39 may be a target for antidiabetic drug intervention.
  •  
7.
  • Forteza, Maria J., et al. (författare)
  • Pyruvate dehydrogenase kinase regulates vascular inflammation in atherosclerosis and increases cardiovascular risk
  • 2023
  • Ingår i: Cardiovascular Research. - : Oxford University Press (OUP). - 0008-6363 .- 1755-3245. ; 119:7, s. 1524-1536
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent studies have revealed a close connection between cellular metabolism and the chronic inflammatory process of atherosclerosis. While the link between systemic metabolism and atherosclerosis is well established, the implications of altered metabolism in the artery wall are less understood. Pyruvate dehydrogenase kinase (PDK)-dependent inhibition of pyruvate dehydrogenase (PDH) has been identified as a major metabolic step regulating inflammation. Whether the PDK/PDH axis plays a role in vascular inflammation and atherosclerotic cardiovascular disease remains unclear. Methods and results Gene profiling of human atherosclerotic plaques revealed a strong correlation between PDK1 and PDK4 transcript levels and the expression of pro-inflammatory and destabilizing genes. Remarkably, the PDK1 and PDK4 expression correlated with a more vulnerable plaque phenotype, and PDK1 expression was found to predict future major adverse cardiovascular events. Using the small-molecule PDK inhibitor dichloroacetate (DCA) that restores arterial PDH activity, we demonstrated that the PDK/PDH axis is a major immunometabolic pathway, regulating immune cell polarization, plaque development, and fibrous cap formation in Apoe−/− mice. Surprisingly, we discovered that DCA regulates succinate release and mitigates its GPR91-dependent signals promoting NLRP3 inflammasome activation and IL-1β secretion by macrophages in the plaque. Conclusions We have demonstrated for the first time that the PDK/PDH axis is associated with vascular inflammation in humans and particularly that the PDK1 isozyme is associated with more severe disease and could predict secondary cardiovascular events. Moreover, we demonstrate that targeting the PDK/PDH axis with DCA skews the immune system, inhibits vascular inflammation and atherogenesis, and promotes plaque stability features in Apoe−/− mice. These results point toward a promising treatment to combat atherosclerosis.
  •  
8.
  • Holst, Birgitte, et al. (författare)
  • G Protein-Coupled Receptor 39 Deficiency Is Associated with Pancreatic Islet Dysfunction
  • 2009
  • Ingår i: Endocrinology. - : The Endocrine Society. - 0013-7227 .- 1945-7170. ; 150, s. 2577-2585
  • Tidskriftsartikel (refereegranskat)abstract
    • G protein-coupled receptor (GPR)-39 is a seven-transmembrane receptor expressed mainly in endocrine and metabolic tissues that acts as a Zn++ sensor signaling mainly through the G(q) and G(12/13) pathways. The expression of GPR39 is regulated by hepatocyte nuclear factor (HNF)-1 alpha and HNF-4 alpha, and in the present study, we addressed the importance of GPR39 for glucose homeostasis and pancreatic islets function. The expression and localization of GPR39 were characterized in the endocrine pancreas and pancreatic cell lines. Gpr39(-/-) mice were studied in vivo, especially in respect of glucose tolerance and insulin sensitivity, and in vitro in respect of islet architecture, gene expression, and insulin secretion. Gpr39 was down-regulated on differentiation of the pluripotent pancreatic cell line AR42J cells toward the exocrine phenotype but was along with Pdx-1 strongly up-regulated on differentiation toward the endocrine phenotype. Immunohistochemistry demonstrated that GRP39 is localized selectively in the insulin-storing cells of the pancreatic islets as well as in the duct cells of the exocrine pancreas. Gpr39(-/-) mice displayed normal insulin sensitivity but moderately impaired glucose tolerance both during oral and iv glucose tolerance tests, and Gpr39(-/-) mice had decreased plasma insulin response to oral glucose. Islet architecture was normal in the Gpr39 null mice, but expression of Pdx-1 and Hnf-1 alpha was reduced. Isolated, perifused islets from Gpr39 null mice secreted less insulin in response to glucose stimulation than islets from wild-type littermates. It is concluded that GPR39 is involved in the control of endocrine pancreatic function, and it is suggested that this receptor could be a novel potential target for the treatment of diabetes. (Endocrinology 150: 2577-2585, 2009)
  •  
9.
  • Lappa, Dimitra, 1988, et al. (författare)
  • Self-organized metabotyping of obese individuals identifies clusters responding differently to bariatric surgery
  • 2023
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203 .- 1932-6203. ; 18:3, s. e0279335-
  • Tidskriftsartikel (refereegranskat)abstract
    • Weight loss through bariatric surgery is efficient for treatment or prevention of obesity related diseases such as type 2 diabetes and cardiovascular disease. Long term weight loss response does, however, vary among patients undergoing surgery. Thus, it is difficult to identify predictive markers while most obese individuals have one or more comorbidities. To overcome such challenges, an in-depth multiple omics analyses including fasting peripheral plasma metabolome, fecal metagenome as well as liver, jejunum, and adipose tissue transcriptome were performed for 106 individuals undergoing bariatric surgery. Machine leaning was applied to explore the metabolic differences in individuals and evaluate if metabolism-based patients' stratification is related to their weight loss responses to bariatric surgery. Using Self-Organizing Maps (SOMs) to analyze the plasma metabolome, we identified five distinct metabotypes, which were differentially enriched for KEGG pathways related to immune functions, fatty acid metabolism, protein-signaling, and obesity pathogenesis. The gut metagenome of the most heavily medicated metabotypes, treated simultaneously for multiple cardiometabolic comorbidities, was significantly enriched in Prevotella and Lactobacillus species. This unbiased stratification into SOM-defined metabotypes identified signatures for each metabolic phenotype and we found that the different metabotypes respond differently to bariatric surgery in terms of weight loss after 12 months. An integrative framework that utilizes SOMs and omics integration was developed for stratifying a heterogeneous bariatric surgery cohort. The multiple omics datasets described in this study reveal that the metabotypes are characterized by a concrete metabolic status and different responses in weight loss and adipose tissue reduction over time. Our study thus opens a path to enable patient stratification and hereby allow for improved clinical treatments.
  •  
10.
  • Lund, Mari L., et al. (författare)
  • Enterochromaffin 5-HT cells : A major target for GLP-1 and gut microbial metabolites
  • 2018
  • Ingår i: MOLECULAR METABOLISM. - : Elsevier. - 2212-8778. ; 11, s. 70-83
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives5-HT storing enterochromaffin (EC) cells are believed to respond to nutrient and gut microbial components, and 5-HT receptor-expressing afferent vagal neurons have been described to be the major sensors of nutrients in the GI-tract. However, the molecular mechanism through which EC cells sense nutrients and gut microbiota is still unclear.Methods and resultsTPH1, the 5-HT generating enzyme, and chromogranin A, an acidic protein responsible for secretory granule storage of 5-HT, were highly enriched in FACS-purified EC cells from both small intestine and colon using a 5-HT antibody-based method. Surprisingly, EC cells from the small intestine did not express GPCRsensors for lipid and protein metabolites, such as FFAR1, GPR119, GPBAR1(TGR5), CaSR, and GPR142, in contrast to the neighboring GLP-1 storing enteroendocrine cell. However, the GLP-1 receptor was particularly highly expressed and enriched in EC cells as judged both by qPCR and by immunohistochemistryusing a receptor antibody. GLP-1 receptor agonists robustly stimulated 5-HT secretion from intestinal preparations using both HPLC and a specific amperometricmethod. Colonic EC cells expressed many different types of known and potential GPCR sensors of microbial metabolites including three receptors for SCFAs, i.e. FFAR2, OLF78, and OLF558 and receptors for aromatic acids, GPR35; secondary bile acids GPBAR1; and acyl-amides and lactate, GPR132.ConclusionNutrient metabolites apparently do not stimulate EC cells of the small intestine directly but through a paracrine mechanism involving GLP-1 secreted from neighboring enteroendocrine cells. In contrast, colonic EC cells are able to sense a multitude of different metabolites generated by the gut microbiota as well as gut hormones, including GLP-1.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12
Typ av publikation
tidskriftsartikel (11)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (12)
Författare/redaktör
Schwartz, Thue W (12)
Nielsen, Jens B, 196 ... (4)
Bäckhed, Fredrik, 19 ... (4)
Tremaroli, Valentina ... (3)
Wierup, Nils (3)
Sundler, Frank (3)
visa fler...
Hjorth, S (3)
Schiöth, Helgi B. (2)
Holst, Jens J (2)
Verheij, J (2)
Langenhan, Tobias (2)
Araç, Demet (2)
Aust, Gabriela (2)
Engel, Felix B (2)
Formstone, Caroline (2)
Liebscher, Ines (2)
Lin, Hsi-Hsien (2)
Monk, Kelly R (2)
Piao, Xianhua (2)
Stacey, Martin (2)
Ushkaryov, Yuri A (2)
Ji, Boyang, 1983 (1)
Olsson, Lisa M., 198 ... (1)
Moritz, Thomas (1)
Kuipers, Folkert (1)
Lundqvist, Annika, 1 ... (1)
Safholm, Jesper (1)
Fredriksson, Robert (1)
Zigman, Jeffrey M. (1)
Pihlajamäki, Jussi (1)
Thulasingam, Madhura ... (1)
Goncalves, Isabel (1)
Wheelock, Craig E. (1)
Sakata, Ichiro (1)
Edsfeldt, Andreas (1)
Dahlen, Sven-Erik (1)
Hedin, Ulf (1)
Hamann, Joerg (1)
Schoeneberg, Torsten (1)
Nilsson, Gunnar (1)
Berg, Martin (1)
Theodorsson, Elvar, ... (1)
Trôst, Kajetan (1)
Calebiro, Davide (1)
Goffinet, André (1)
Hamann, Jörg (1)
Kittel, Robert J (1)
Petrenko, Alexander (1)
Prömel, Simone (1)
Wobus, Manja (1)
visa färre...
Lärosäte
Göteborgs universitet (4)
Lunds universitet (4)
Chalmers tekniska högskola (4)
Uppsala universitet (3)
Karolinska Institutet (2)
Linköpings universitet (1)
Språk
Engelska (12)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (10)
Naturvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy