SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Shaoteng Liu 1984 ) "

Sökning: WFRF:(Shaoteng Liu 1984 )

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Liu, Shaoteng, 1984-, et al. (författare)
  • Fast Deployment of Reliable Distributed Control Planes with Performance Guarantees
  • 2020
  • Ingår i: IEEE Access. - : Institute of Electrical and Electronics Engineers Inc.. - 2169-3536. ; 8, s. 70125-70149
  • Tidskriftsartikel (refereegranskat)abstract
    • Current trends strongly indicate a transition towards large-scale programmable networks with virtual network functions. In such a setting, deployment of distributed control planes will be vital for guaranteed service availability and performance. Moreover, deployment strategies need to be completed quickly in order to respond flexibly to varying network conditions. We propose an effective optimization approach that automatically decides on the needed number of controllers, their locations, control regions, and traffic routes into a plan which fulfills control flow reliability and routability requirements, including bandwidth and delay bounds. The approach is also fast: The algorithms for bandwidth and delay bounds can reduce the running time at the level of 50x and 500x, respectively, compared to state-of-the-art and direct solvers such as CPLEX. Altogether, our results indicate that computing a deployment plan adhering to predetermined performance requirements over network topologies of various sizes can be produced in seconds and minutes, rather than hours and days. Such fast allocation of resources that guarantees reliable connectivity and service quality is fundamental for elastic and efficient use of network resources.
  •  
3.
  • Liu, Shaoteng, 1984-, et al. (författare)
  • Flexible distributed control plane deployment
  • 2018
  • Ingår i: Proceedings 2018 IEEE/IFIP Network Operations and Management Symposium, NOMS 2018. - : Institute of Electrical and Electronics Engineers (IEEE). ; , s. 1-7, s. 1-7
  • Konferensbidrag (refereegranskat)abstract
    • For large-scale programmable networks, flexible deployment of distributed control planes is essential for service availability and performance. However, existing approaches only focus on placing controllers whereas the consequent control traffic is often ignored. In this paper, we propose a black-box optimization framework offering the additional steps for quanti-fying the effect of the consequent control traffic when deploying a distributed control plane. Evaluating different implementations of the framework over real-world topologies shows that close to optimal solutions can be achieved. Moreover, experiments indicate that running a method for controller placement without considering the control traffic, cause excessive bandwidth usage (worst cases varying between 20.1%-50.1% more) and congestion, compared to our approach.
  •  
4.
  • Shaoteng, Liu, 1984- (författare)
  • New circuit switching techniques in on-chip networks
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Network on Chip (NoC) is proposed as a promising technology to address the communication challenges in deep sub-micron era. NoC brings network-based communication into the on-chip environment and tackles the problems like long wire complexities, bandwidth scaling and so on. After more than a decade's evolution and development, there are many NoC architectures and solutions available. Nevertheless, NoCs can be classi_ed into two categories: packet switched NoC and circuit switched NoC. In this thesis, targeting circuit switched NoC, we present our innovations and considerations on circuit switched NoCs in three areas, namely, connection setup method, time division multiplexing (TDM) technology and spatial division multiplexing (SDM) technology.Connection setup technique deeply inuences the architecture and performance of a circuit switched NoC, since circuit switched NoC requires to set up connections before launching data transfer. We propose a novel parallel probe based method for dynamic distributed connection setup. This setup method on one hand searches all the possible minimal paths in parallel. On the other hand, it also has a mechanism to reduce resource occupation during the path search process by reclaiming redundant paths. With this setup method, connections are more likely to be established because of the exploration on the path diversity.TDM based NoC constitutes a sub-category of circuit switched NoC. We propose a double time-wheel technique to facilitate a probe based connection setup in TDM NoCs. With this technique, path search algorithms used in connection setup are no longer limited to deterministic routing algorithms. Moreover, the hardware cost can be reduced, since setup requests and data flows can co-exist in one network. Apart from the double time-wheel technique for connection setup, we also propose a highway technique that can enhance the slot utilization during data transfer. This technique can accelerate the transfer of a data flow while maintaining the throughput guarantee and the packet order.SDM based NoC constitutes another sub-category of circuit switched NoC. SDM NoC can benefit from high clock frequency and simple synchronization efforts. To better support the dynamic connection setup in SDM NoCs, we design a single cycle allocator for channel allocation inside each router. This allocator can guarantee both strong fairness and maximal matching quality. We also build up a circuit switched NoC, which can support multiple channels and multiple networks, to study different ways of organizing channels and setting up connections. Finally, we make a comparison between circuit switched NoC and packet switched NoC. We show the strengths and weaknesses on each of them by analysis and evaluation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy