SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sigeman Hanna) "

Sökning: WFRF:(Sigeman Hanna)

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dussex, Nicolas, et al. (författare)
  • Biomolecular analyses reveal the age, sex and species identity of a near-intact Pleistocene bird carcass
  • 2020
  • Ingår i: Communications biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Ancient remains found in permafrost represent a rare opportunity to study past ecosystems. Here, we present an exceptionally well-preserved ancient bird carcass found in the Siberian permafrost, along with a radiocarbon date and a reconstruction of its complete mitochondrial genome. The carcass was radiocarbon dated to approximately 44-49 ka BP, and was genetically identified as a female horned lark. This is a species that usually inhabits open habitat, such as the steppe environment that existed in Siberia at the time. This near-intact carcass highlights the potential of permafrost remains for evolutionary studies that combine both morphology and ancient nucleic acids. Nicolas Dussex et al. identify a 44,000-49,000 year old bird found in Siberian permafrost as a female horned lark using ancient DNA. This exceptionally well-preserved specimen illustrates the potential contribution to science of permafrost deposits, such as the study of ecology and evolution of ancient ecosystems, calibration of molecular clocks, and furthering our understanding of processes such as biological regulation and gene expression in relation to climate change.
  •  
2.
  • Feng, Shaohong, et al. (författare)
  • Dense sampling of bird diversity increases power of comparative genomics
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 587:7833
  • Tidskriftsartikel (refereegranskat)abstract
    • Whole-genome sequencing projects are increasingly populating the tree of life and characterizing biodiversity(1-4). Sparse taxon sampling has previously been proposed to confound phylogenetic inference(5), and captures only a fraction of the genomic diversity. Here we report a substantial step towards the dense representation of avian phylogenetic and molecular diversity, by analysing 363 genomes from 92.4% of bird families-including 267 newly sequenced genomes produced for phase II of the Bird 10,000 Genomes (B10K) Project. We use this comparative genome dataset in combination with a pipeline that leverages a reference-free whole-genome alignment to identify orthologous regions in greater numbers than has previously been possible and to recognize genomic novelties in particular bird lineages. The densely sampled alignment provides a single-base-pair map of selection, has more than doubled the fraction of bases that are confidently predicted to be under conservation and reveals extensive patterns of weak selection in predominantly non-coding DNA. Our results demonstrate that increasing the diversity of genomes used in comparative studies can reveal more shared and lineage-specific variation, and improve the investigation of genomic characteristics. We anticipate that this genomic resource will offer new perspectives on evolutionary processes in cross-species comparative analyses and assist in efforts to conserve species. A dataset of the genomes of 363 species from the Bird 10,000 Genomes Project shows increased power to detect shared and lineage-specific variation, demonstrating the importance of phylogenetically diverse taxon sampling in whole-genome sequencing.
  •  
3.
  • Hansson, Bengt, et al. (författare)
  • Contrasting results from GWAS and QTL mapping on wing length in great reed warblers
  • 2018
  • Ingår i: Molecular Ecology Resources. - : Wiley. - 1755-098X .- 1755-0998. ; 18:4, s. 867-876
  • Tidskriftsartikel (refereegranskat)abstract
    • A major goal in evolutionary biology is to understand the genetic basis of adaptive traits. In migratory birds, wing morphology is such a trait. Our previous work on the great reed warbler (Acrocephalus arundinaceus) shows that wing length is highly heritable and under sexually antagonistic selection. Moreover, a quantitative trait locus (QTL) mapping analysis detected a pronounced QTL for wing length on chromosome 2, suggesting that wing morphology is partly controlled by genes with large effects. Here, we re-evaluate the genetic basis of wing length in great reed warblers using a genomewide association study (GWAS) approach based on restriction site-associated DNA sequencing (RADseq) data. We use GWAS models that account for relatedness between individuals and include covariates (sex, age and tarsus length). The resulting association landscape was flat with no peaks on chromosome 2 or elsewhere, which is in line with expectations for polygenic traits. Analysis of the distribution of p-values did not reveal biases, and the inflation factor was low. Effect sizes were however not uniformly distributed on some chromosomes, and the Z chromosome had weaker associations than autosomes. The level of linkage disequilibrium (LD) in the population decayed to background levels within c. 1 kbp. There could be several reasons to why our QTL study and GWAS gave contrasting results including differences in how associations are modelled (cosegregation in pedigree vs. LD associations), how covariates are accounted for in the models, type of marker used (multi- vs. biallelic), difference in power or a combination of these. Our study highlights that the genetic architecture even of highly heritable traits is difficult to characterize in wild populations.
  •  
4.
  • Lundberg, Max, et al. (författare)
  • Genetic differences between willow warbler migratory phenotypes are few and cluster in large haplotype blocks
  • 2017
  • Ingår i: Evolution Letters. - : John Wiley & Sons. - 2056-3744. ; 1:3, s. 155-168
  • Tidskriftsartikel (refereegranskat)abstract
    • It is well established that differences in migratory behavior between populations of songbirds have a genetic basis but the actual genes underlying these traits remains largely unknown. In an attempt to identify such candidate genes we de novo assembled the genome of the willow warbler Phylloscopus trochilus, and used whole-genome resequencing and a SNP array to associate genomic variation with migratory phenotypes across two migratory divides around the Baltic Sea that separate SW migrating P. t. trochilus wintering in western Africa and SSE migrating P. t. acredula wintering in eastern and southern Africa. We found that the genomes of the two migratory phenotypes lack clear differences except for three highly differentiated regions located on chromosomes 1, 3, and 5 (containing 146, 135, and 53 genes, respectively). Within each migratory phenotype we found virtually no differences in allele frequencies for thousands of SNPs, even when comparing geographically distant populations breeding in Scandinavia and Far East Russia (>6000 km). In each of the three differentiated regions, multidimensional scaling-based clustering of SNP genotypes from more than 1100 individuals demonstrates the presence of distinct haplotype clusters that are associated with each migratory phenotype. In turn, this suggests that recombination is absent or rare between haplotypes, which could be explained by inversion polymorphisms. Whereas SNP alleles on chromosome 3 correlate with breeding altitude and latitude, the allele distribution within the regions on chromosomes 1 and 5 perfectly matches the geographical distribution of the migratory phenotypes. The most differentiated 10 kb windows and missense mutations within these differentiated regions are associated with genes involved in fatty acid synthesis, possibly representing physiological adaptations to the different migratory strategies. The ∼200 genes in these regions, of which several lack described function, will direct future experimental and comparative studies in the search for genes that underlie important migratory traits.
  •  
5.
  • Ponnikas, Suvi, et al. (författare)
  • Extreme variation in recombination rate and genetic diversity along the Sylvioidea neo-sex chromosome
  • 2022
  • Ingår i: Molecular Ecology. - : Wiley. - 0962-1083 .- 1365-294X. ; 31:13, s. 3566-3583
  • Tidskriftsartikel (refereegranskat)abstract
    • Recombination strongly impacts sequence evolution by affecting the extent of linkage and the efficiency of selection. Here, we study recombination over the Z chromosome in great reed warblers (Acrocephalus arundinaceus) using pedigree-based linkage mapping. This species has extended Z and W chromosomes (“neo-sex chromosomes”) formed by a fusion between a part of chromosome 4A and the ancestral sex chromosomes, which provides a unique opportunity to assess recombination and sequence evolution in sex-linked regions of different ages. We assembled an 87.54 Mbp and 90.19 cM large Z with a small pseudoautosomal region (0.89 Mbp) at one end and the fused Chr4A-part at the other end of the chromosome. A prominent feature in our data was an extreme variation in male recombination rate along Z with high values at both chromosome ends, but an apparent lack of recombination over a substantial central section, covering 78% of the chromosome. The nonrecombining region showed a drastic loss of genetic diversity and accumulation of repeats compared to the recombining parts. Thus, our data emphasize a key role of recombination in affecting local levels of polymorphism. Nonetheless, the evolutionary rate of genes (dN/dS) did not differ between high and low recombining regions, suggesting that the efficiency of selection on protein-coding sequences can be maintained also at very low levels of recombination. Finally, the Chr4A-derived part showed a similar recombination rate as the part of the ancestral Z that did recombine, but its sequence characteristics reflected both its previous autosomal, and current Z-linked, recombination patterns.
  •  
6.
  • Ponnikas, Suvi, et al. (författare)
  • Why Do Sex Chromosomes Stop Recombining?
  • 2018
  • Ingår i: Trends in Genetics. - : Elsevier BV. - 0168-9525. ; 34:7, s. 492-503
  • Tidskriftsartikel (refereegranskat)abstract
    • It is commonly assumed that sex chromosomes evolve recombination suppression because selection favours linkage between sex-determining and sexually antagonistic genes. However, although the role of sexual antagonism during sex chromosome evolution has attained strong support from theory, experimental and observational evidence is rare or equivocal. Here, we highlight alternative, often neglected, hypotheses for recombination suppression on sex chromosomes, which invoke meiotic drive, heterozygote advantage, and genetic drift, respectively. We contrast the hypotheses, the situations when they are likely to be of importance, and outline why it is surprisingly difficult to test them. Lastly, we discuss future research directions (including modelling, population genomics, comparative approaches, and experiments) to disentangle the different hypotheses of sex chromosome evolution.
  •  
7.
  • Sigeman, Hanna, et al. (författare)
  • A novel neo-sex chromosome in Sylvietta brachyura (Macrosphenidae) adds to the extraordinary avian sex chromosome diversity among Sylvioidea songbirds
  • 2022
  • Ingår i: Journal of evolutionary biology. - : Wiley. - 1010-061X .- 1420-9101. ; 35:12, s. 1797-1805
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of a novel neo-sex chromosome in an African warbler, Sylvietta brachyura (northern crombec; Macrosphenidae). This species is part of the Sylvioidea superfamily, where four separate autosome–sex chromosome translocation events have previously been discovered via comparative genomics of 11 of the 22 families in this clade. Our discovery here resulted from analyses of genomic data of single species-representatives from three additional Sylvioidea families (Macrosphenidae, Pycnonotidae and Leiothrichidae). In all three species, we confirmed the translocation of a part of chromosome 4A to the sex chromosomes, which originated basally in Sylvioidea. In S. brachyura, we found that a part of chromosome 8 has been translocated to the sex chromosomes, forming a unique neo-sex chromosome in this lineage. Furthermore, the non-recombining part of 4A in S. brachyura is smaller than in other Sylvioidea species, which suggests that recombination continued along this region after the fusion event in the Sylvioidea ancestor. These findings reveal additional sex chromosome diversity among the Sylvioidea, where five separate translocation events are now confirmed.
  •  
8.
  • Sigeman, Hanna, et al. (författare)
  • Avian Neo-Sex Chromosomes Reveal Dynamics of Recombination Suppression and W Degeneration
  • 2021
  • Ingår i: Molecular biology and evolution. - : Oxford University Press. - 0737-4038 .- 1537-1719. ; 38:12, s. 5275-5291
  • Tidskriftsartikel (refereegranskat)abstract
    • How the avian sex chromosomes first evolved from autosomes remains elusive as 100 million years (My) of divergence and degeneration obscure their evolutionary history. The Sylvioidea group of songbirds is interesting for understanding avian sex chromosome evolution because a chromosome fusion event similar to 24 Ma formed "neo-sex chromosomes" consisting of an added (new) and an ancestral (old) part. Here, we report the complete female genome (ZW) of one Sylvioidea species, the great reed warbler (Acrocephalus arundinaceus). Our long-read assembly shows that the added region has been translocated to both Z and W, and whereas the added-Z has retained its gene order the added-W part has been heavily rearranged. Phylogenetic analyses show that recombination between the homologous added-Z and -W regions continued after the fusion event, and that recombination suppression across this region took several million years to be completed. Moreover, recombination suppression was initiated across multiple positions over the added-Z, which is not consistent with a simple linear progression starting from the fusion point. As expected following recombination suppression, the added-W show signs of degeneration including repeat accumulation and gene loss. Finally, we present evidence for nonrandom maintenance of slowly evolving and dosage-sensitive genes on both ancestral- and added-W, a process causing correlated evolution among orthologous genes across broad taxonomic groups, regardless of sex linkage.
  •  
9.
  • Sigeman, Hanna (författare)
  • Evolution of sex chromosomes in Sylvioidea songbirds
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Sex chromosomes were discovered more than 100 years ago. They have been studied intensely from a theoretical perspective since then, giving rise to a large body of testable predictions about their evolution from autosomes. A common feature of sex chromosomes is recombination suppression between the sex chromosome copies (X and Y in male heterogametic systems, or Z and W in female heterogametic systems). Without recombination, the sex-limited chromosome (Y or W) is expected to degenerate through the accumulation of deleterious mutations and repeat elements. Over long evolutionary time scales, this degeneration may leave the Y/W chromosomes short and almost completely devoid of functional genes.Using genome sequencing technology, we can now study the full DNA sequence of sex chromosomes. The analysis of sequence data from a wide range of taxonomic groups has revealed that sex chromosomes are more dynamic and variable than previously believed. Several aspects of sex chromosome evolution, however, remain poorly understood, especially relating to the early stages of evolution from autosomes. This is partly because some hypotheses are challenging to test, but also because most well-studied sex chromosome systems are evolutionarily old and biased towards XY systems.In this thesis, I study the evolution of sex chromosomes across Sylvioidea songbirds using genomic data and bioinformatic methodology. All members of this superfamily have a shared “neo-sex chromosome”: a fusion between an autosome (chromosome 4A) and the existing sex chromosomes. The sex chromosomes of birds (ZW) formed in a common ancestor more than 100 million years ago. Since then, the W chromosome has undergone severe degradation and shortening, obscuring almost all traces of their early evolution. Additions of new genetic material through autosome-sex chromosome fusions, however, allow us to study the early stages of sex chromosome evolution.I developed a computational pipeline aimed at discovering and visualizing sex chromosomes. I applied this pipeline to genomic data from species belonging to 13 different Sylvioidea families, and found that four additional autosome-sex chromosome fusions have occurred in different lineages within the group (involving chromosomes 3, 4, 5 and 8). These different fused regions have intermediate to extremely low W degeneration levels, with dosage sensitive and evolutionarily constrained genes being retained to a higher degree than other genes. I also studied the structure of these neo-sex chromosomes, how female gene expression changes in response to W degeneration and how recombination suppression extends along newly added sex chromosome regions. The work in this thesis shows that Sylvioidea songbirds are an ideal system for testing theory relating to sex chromosome evolution, and that bird sex chromosomes are more variable than previously believed.
  •  
10.
  • Sigeman, Hanna, et al. (författare)
  • Findzx : an automated pipeline for detecting and visualising sex chromosomes using whole-genome sequencing data
  • 2022
  • Ingår i: BMC Genomics. - : Springer Science and Business Media LLC. - 1471-2164. ; 23:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Sex chromosomes have evolved numerous times, as revealed by recent genomic studies. However, large gaps in our knowledge of sex chromosome diversity across the tree of life remain. Filling these gaps, through the study of novel species, is crucial for improved understanding of why and how sex chromosomes evolve. Characterization of sex chromosomes in already well-studied organisms is also important to avoid misinterpretations of population genomic patterns caused by undetected sex chromosome variation. Results: Here we present findZX, an automated Snakemake-based computational pipeline for detecting and visualizing sex chromosomes through differences in genome coverage and heterozygosity between any number of males and females. A main feature of the pipeline is the option to perform a genome coordinate liftover to a reference genome of another species. This allows users to inspect sex-linked regions over larger contiguous chromosome regions, while also providing important between-species synteny information. To demonstrate its effectiveness, we applied findZX to publicly available genomic data from species belonging to widely different taxonomic groups (mammals, birds, reptiles, and fish), with sex chromosome systems of different ages, sizes, and levels of differentiation. We also demonstrate that the liftover method is robust over large phylogenetic distances (> 80 million years of evolution). Conclusions: With findZX we provide an easy-to-use and highly effective tool for identification of sex chromosomes. The pipeline is compatible with both Linux and MacOS systems, and scalable to suit different computational platforms.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17
Typ av publikation
tidskriftsartikel (15)
annan publikation (1)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (15)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Hansson, Bengt (13)
Westerdahl, Helena (3)
Hasselquist, Dennis (2)
Kutschera, Verena E. (2)
Proux-Wéra, Estelle (2)
Stervander, Martin (2)
visa fler...
Dalen, Love (2)
Bunikis, Ignas (2)
Abbott, Jessica K. (1)
Bensch, Staffan (1)
Wolf, Jochen B. W. (1)
Lei, Fumin (1)
Liu, Yang (1)
Ali Abed, Salwan (1)
Larson, Keith (1)
Åkesson, Susanne (1)
Haussler, David (1)
Edwards, Scott V. (1)
Margaryan, Ashot (1)
Nystedt, Björn, 1978 ... (1)
Soler, Lucile (1)
Sicheritz-Ponten, Th ... (1)
Ericson, Per G P (1)
Christidis, Les (1)
Fuchs, Jerome (1)
Petersen, Bent (1)
Sinding, Mikkel-Holg ... (1)
Gilbert, M. Thomas P ... (1)
Taylor, Scott A. (1)
Videvall, Elin (1)
Diekhans, Mark (1)
Krone, Oliver (1)
Zhou, Qi (1)
Ryan, Peter G. (1)
Mellinger, Samantha (1)
Armstrong, Joel (1)
Fang, Qi (1)
Xie, Duo (1)
Feng, Shaohong (1)
Stiller, Josefin (1)
Jarvis, Erich D. (1)
Zhang, Guojie (1)
Paten, Benedict (1)
Suh, Alexander (1)
Wang, Jian (1)
Burt, David W. (1)
van der Valk, Tom (1)
Riutort, Marta (1)
Balakrishnan, Christ ... (1)
Grahn, Mats (1)
visa färre...
Lärosäte
Lunds universitet (16)
Stockholms universitet (5)
Uppsala universitet (4)
Umeå universitet (2)
Naturhistoriska riksmuseet (2)
Södertörns högskola (1)
visa fler...
Karolinska Institutet (1)
visa färre...
Språk
Engelska (17)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (16)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy