SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sigmundsson T) "

Sökning: WFRF:(Sigmundsson T)

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Hreinsdottir, S., et al. (författare)
  • Volcanic plume height correlated with magma-pressure change at Grimsvotn Volcano, Iceland
  • 2014
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 7:3, s. 214-218
  • Tidskriftsartikel (refereegranskat)abstract
    • Magma flow during volcanic eruptions causes surface deformation that can be used to constrain the location, geometry and internal pressure evolution of the underlying magmatic source(1). The height of the volcanic plumes during explosive eruptions also varies with magma flow rate, in a nonlinear way(2,3). In May 2011, an explosive eruption at Grimsvotn Volcano, Iceland, erupted about 0.27 km(3) dense-rock equivalent of basaltic magma in an eruption plume that was about 20 km high. Here we use Global Positioning System (GPS) and tilt data, measured before and during the eruption at Grimsvotn Volcano, to show that the rate of pressure change in an underlying magma chamber correlates with the height of the volcanic plume over the course of the eruption. We interpret ground deformation of the volcano, measured by geodesy, to result from a pressure drop within a magma chamber at about 1.7 km depth. We estimate the rate of magma discharge and the associated evolution of the plume height by differentiating the co-eruptive pressure drop with time. The time from the initiation of the pressure drop to the onset of the eruption was about 60 min, with about 25% of the total pressure change preceding the eruption. Near-real-time geodetic observations can thus be useful for both timely eruption warnings and for constraining the evolution of volcanic plumes.
  •  
3.
  • Ng, M Y M, et al. (författare)
  • Meta-analysis of 32 genome-wide linkage studies of schizophrenia
  • 2009
  • Ingår i: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 14:8, s. 774-785
  • Tidskriftsartikel (refereegranskat)abstract
    • A genome scan meta-analysis (GSMA) was carried out on 32 independent genome-wide linkage scan analyses that included 3255 pedigrees with 7413 genotyped cases affected with schizophrenia (SCZ) or related disorders. The primary GSMA divided the autosomes into 120 bins, rank-ordered the bins within each study according to the most positive linkage result in each bin, summed these ranks (weighted for study size) for each bin across studies and determined the empirical probability of a given summed rank (P(SR)) by simulation. Suggestive evidence for linkage was observed in two single bins, on chromosomes 5q (142-168 Mb) and 2q (103-134 Mb). Genome-wide evidence for linkage was detected on chromosome 2q (119-152 Mb) when bin boundaries were shifted to the middle of the previous bins. The primary analysis met empirical criteria for 'aggregate' genome-wide significance, indicating that some or all of 10 bins are likely to contain loci linked to SCZ, including regions of chromosomes 1, 2q, 3q, 4q, 5q, 8p and 10q. In a secondary analysis of 22 studies of European-ancestry samples, suggestive evidence for linkage was observed on chromosome 8p (16-33 Mb). Although the newer genome-wide association methodology has greater power to detect weak associations to single common DNA sequence variants, linkage analysis can detect diverse genetic effects that segregate in families, including multiple rare variants within one locus or several weakly associated loci in the same region. Therefore, the regions supported by this meta-analysis deserve close attention in future studies.
  •  
4.
  • Sigmundsson, F., et al. (författare)
  • Segmented lateral dyke growth in a rifting event at Bardarbunga volcanic system, Iceland
  • 2015
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 517:7533
  • Tidskriftsartikel (refereegranskat)abstract
    • Crust at many divergent plate boundaries forms primarily by the injection of vertical sheet-like dykes, some tens of kilometres long(1). Previous models of rifting events indicate either lateral dyke growth away from a feeding source, with propagation rates decreasing as the dyke lengthens(2-4), or magma flowing vertically into dykes from an underlying source(5,6), with the role of topography on the evolution of lateral dykes not clear. Here we show how a recent segmented dyke intrusion in the Bardarbunga volcanic system grew laterally for more than 45 kilometres at a variable rate, with topography influencing the direction of propagation. Barriers at the ends of each segment were overcome by the build-up of pressure in the dyke end; then a new segment formed and dyke lengthening temporarily peaked. The dyke evolution, which occurred primarily over 14 days, was revealed by propagating seismicity, ground deformation mapped by Global Positioning System(GPS), interferometric analysis of satellite radar images (InSAR), and graben formation. The strike of the dyke segments varies from an initially radial direction away from the Bardarbunga caldera, towards alignment with that expected from regional stress at the distal end. A model minimizing the combined strain and gravitational potential energy explains the propagation path. Dyke opening and seismicity focused at the most distal segment at any given time, and were simultaneous with magma source deflation and slow collapse at the Bardarbunga caldera, accompanied by a series of magnitude M > 5 earthquakes. Dyke growth was slowed down by an effusive fissure eruption near the end of the dyke. Lateral dyke growth with segment barrier breaking by pressure build-up in the dyke distal end explains how focused upwelling of magma under central volcanoes is effectively redistributed over long distances to create new upper crust at divergent plate boundaries.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy