SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Singarayer Joy S.) "

Sökning: WFRF:(Singarayer Joy S.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Raghavan, Maanasa, et al. (författare)
  • Genomic evidence for the Pleistocene and recent population history of Native Americans
  • 2015
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 349:6250
  • Tidskriftsartikel (refereegranskat)abstract
    • Howand when the Americas were populated remains contentious. Using ancient and modern genome-wide data, we found that the ancestors of all present-day Native Americans, including Athabascans and Amerindians, entered the Americas as a single migration wave from Siberia no earlier than 23 thousand years ago (ka) and after no more than an 8000-year isolation period in Beringia. After their arrival to the Americas, ancestral Native Americans diversified into two basal genetic branches around 13 ka, one that is now dispersed across North and South America and the other restricted to North America. Subsequent gene flow resulted in some Native Americans sharing ancestry with present-day East Asians (including Siberians) and, more distantly, Australo-Melanesians. Putative "Paleoamerican" relict populations, including the historical Mexican Pericues and South American Fuego-Patagonians, are not directly related to modern Australo-Melanesians as suggested by the Paleoamerican Model.
  •  
2.
  • Lorenzen, Eline D., et al. (författare)
  • Species-specific responses of Late Quaternary megafauna to climate and humans
  • 2011
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 479:7373, s. 359-364
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite decades of research, the roles of climate and humans in driving the dramatic extinctions of large-bodied mammals during the Late Quaternary period remain contentious. Here we use ancient DNA, species distribution models and the human fossil record to elucidate how climate and humans shaped the demographic history of woolly rhinoceros, woolly mammoth, wild horse, reindeer, bison and musk ox. We show that climate has been a major driver of population change over the past 50,000 years. However, each species responds differently to the effects of climatic shifts, habitat redistribution and human encroachment. Although climate change alone can explain the extinction of some species, such as Eurasian musk ox and woolly rhinoceros, a combination of climatic and anthropogenic effects appears to be responsible for the extinction of others, including Eurasian steppe bison and wild horse. We find no genetic signature or any distinctive range dynamics distinguishing extinct from surviving species, emphasizing the challenges associated with predicting future responses of extant mammals to climate and human-mediated habitat change.
  •  
3.
  • Allen, Judy R. M., et al. (författare)
  • Last glacial vegetation of northern Eurasia
  • 2010
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791. ; 29:19-20, s. 2604-2618
  • Tidskriftsartikel (refereegranskat)abstract
    • In order to investigate the potential role of vegetation changes in megafaunal extinctions during the later part of the last glacial stage and early Holocene (42-10 ka BP), the palaeovegetation of northern Eurasia and Alaska was simulated using the LPJ-GUESS dynamic vegetation model. Palaeoclimatic driving data were derived from simulations made for 22 time slices using the Hadley Centre Unified Model. Modelled annual net primary productivity (aNPP) of a series of plant functional types (PFTs) is mapped for selected time slices and summarised for major geographical regions for all time slices. Strong canonical correlations are demonstrated between model outputs and pollen data compiled for the same period and region. Simulated aNPP values, especially for tree PFTs and for a mesophilous herb PFT, provide evidence of the structure and productivity of last glacial vegetation. The mesophilous herb PFT aNPP is higher in many areas during the glacial than at present or during the early Holocene. Glacial stage vegetation, whilst open and largely treeless in much of Europe, thus had a higher capacity to support large vertebrate herbivore populations than did early Holocene vegetation. A marked and rapid decrease in aNPP of mesophilous herbs began shortly after the Last Glacial Maximum, especially in western Eurasia. This is likely implicated in extinction of several large herbivorous mammals during the latter part of the glacial stage and the transition to the Holocene. (c) 2010 Elsevier Ltd. All rights reserved.
  •  
4.
  • Koriche, Sifan A., et al. (författare)
  • Impacts of Variations in Caspian Sea Surface Area on Catchment-Scale and Large-Scale Climate
  • 2021
  • Ingår i: Journal of Geophysical Research - Atmospheres. - : American Geophysical Union (AGU). - 2169-897X .- 2169-8996. ; 126:18
  • Tidskriftsartikel (refereegranskat)abstract
    • The Caspian Sea (CS) is the largest inland lake in the world. Large variations in sea level and surface area occurred in the past and are projected for the future. The potential impacts on regional and large-scale hydroclimate are not well understood. Here, we examine the impact of CS area on climate within its catchment and across the northern hemisphere, for the first time with a fully coupled climate model. The Community Earth System Model (CESM1.2.2) is used to simulate the climate of four scenarios: (a) larger than present CS area, (b) current area, (c) smaller than present area, and (d) no-CS scenario. The results reveal large changes in the regional atmospheric water budget. Evaporation (e) over the sea increases with increasing area, while precipitation (P) increases over the south-west CS with increasing area. P-E over the CS catchment decreases as CS surface area increases, indicating a dominant negative lake-evaporation feedback. A larger CS reduces summer surface air temperatures and increases winter temperatures. The impacts extend eastwards, where summer precipitation is enhanced over central Asia and the north-western Pacific experiences warming with reduced winter sea ice. Our results also indicate weakening of the 500-hPa troughs over the northern Pacific with larger CS area. We find a thermal response triggers a southward shift of the upper troposphere jet stream during summer. Our findings establish that changing CS area results in climate impacts of such scope that CS area variations should be incorporated into climate model simulations, including palaeo and future scenarios.
  •  
5.
  • Koriche, Sifan A., et al. (författare)
  • The fate of the Caspian Sea under projected climate change and water extraction during the 21st century
  • 2021
  • Ingår i: Environmental Research Letters. - : Institute of Physics Publishing (IOPP). - 1748-9326. ; 16:9
  • Tidskriftsartikel (refereegranskat)abstract
    • The Caspian Sea (CS) delivers considerable ecosystem services to millions of people. It experienced water level variations of 3 m during the 20th century alone. Robust scenarios of future CS level are vital to inform environmental risk management and water-use planning. In this study we investigated the water budget variation in the CS drainage basin and its potential impact on CS level during the 21st century using projected climate from selected climate change scenarios of shared socioeconomic pathways (SSPs) and representative concentration pathways (RCPs), and explored the impact of human extractions. We show that the size of the CS prescribed in climate models determines the modelled water budgets for both historical and future projections. Most future projections show drying over the 21st century. The moisture deficits are more pronounced for extreme radiative forcing scenarios (RCP8.5/SSP585) and for models where a larger CS is prescribed. By 2100, up to 8 (10) m decrease in CS level is found using RCP4.5 (RCP8.5) models, and up to 20 (30) m for SSP245 (SSP585) scenario models. Water extraction rates are as important as climate in controlling future CS level, with potentially up to 7 m further decline, leading to desiccation of the shallow northern CS. This will have wide-ranging implications for the livelihoods of the surrounding communities; increasing vulnerability to freshwater scarcity, transforming ecosystems, as well as impacting the climate system. Caution should be exercised when using individual models to inform policy as projected CS level is so variable between models. We identify that many climate models either ignore, or do not properly prescribe, CS area. No future climate projections include any changes in CS surface area, even when the catchment is projected to be considerably drier. Coupling between atmosphere and lakes within climate models would be a significant advance to capture crucial two-way feedbacks.
  •  
6.
  • Koriche, Sifan A., et al. (författare)
  • What are the drivers of Caspian Sea level variation during the late Quaternary?
  • 2022
  • Ingår i: Quaternary Science Reviews. - : Elsevier. - 0277-3791 .- 1873-457X. ; 283
  • Tidskriftsartikel (refereegranskat)abstract
    • Quaternary Caspian Sea level variations depended on geophysical processes (affecting the opening and closing of gateways and basin size/shape) and hydro-climatological processes (affecting water balance). Disentangling the drivers of past Caspian Sea level variation, as well as the mechanisms by which they impacted the Caspian Sea level variation, is much debated. In this study we examine the relative impacts of hydroclimatic change, ice-sheet accumulation and melt, and isostatic adjustment on Caspian Sea level change. We performed model analysis of ice-sheet and hydroclimate impacts on Caspian Sea level and compared these with newly collated published palaeo-Caspian sea level data for the last glacial cycle. We used palaeoclimate model simulations from a global coupled ocean-atmosphere-vegetation climate model, HadCM3, and ice-sheet data from the ICE-6G_C glacial isostatic adjustment model. Our results show that ice-sheet meltwater during the last glacial cycle played a vital role in Caspian Sea level variations, which is in agreement with hypotheses based on palaeo-Caspian Sea level information. The effect was directly linked to the reorganization and expansion of the Caspian Sea palaeo-drainage system resulting from topographic change. The combined contributions from meltwater and runoff from the expanded basin area were primary factors in the Caspian Sea transgression during the deglaciation period between 20 and 15 kyr BP. Their impact on the evolution of Caspian Sea level lasted until around 13 kyr BP. Millennial scale events (Heinrich events and the Younger Dryas) negatively impacted the surface water budget of the Caspian Sea but their influence on Caspian Sea level variation was short-lived and was outweighed by the massive combined meltwater and runoff contribution over the expanded basin. (c) 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy