SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sittler Benoit) "

Sökning: WFRF:(Sittler Benoit)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Arridge, Christopher S., et al. (författare)
  • Uranus Pathfinder : exploring the origins and evolution of Ice Giant planets
  • 2012
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 33:2-3, s. 753-791
  • Tidskriftsartikel (refereegranskat)abstract
    • The "Ice Giants" Uranus and Neptune are a different class of planet compared to Jupiter and Saturn. Studying these objects is important for furthering our understanding of the formation and evolution of the planets, and unravelling the fundamental physical and chemical processes in the Solar System. The importance of filling these gaps in our knowledge of the Solar System is particularly acute when trying to apply our understanding to the numerous planetary systems that have been discovered around other stars. The Uranus Pathfinder (UP) mission thus represents the quintessential aspects of the objectives of the European planetary community as expressed in ESA's Cosmic Vision 2015-2025. UP was proposed to the European Space Agency's M3 call for medium-class missions in 2010 and proposed to be the first orbiter of an Ice Giant planet. As the most accessible Ice Giant within the M-class mission envelope Uranus was identified as the mission target. Although not selected for this call the UP mission concept provides a baseline framework for the exploration of Uranus with existing low-cost platforms and underlines the need to develop power sources suitable for the outer Solar System. The UP science case is based around exploring the origins, evolution, and processes at work in Ice Giant planetary systems. Three broad themes were identified: (1) Uranus as an Ice Giant, (2) An Ice Giant planetary system, and (3) An asymmetric magnetosphere. Due to the long interplanetary transfer from Earth to Uranus a significant cruise-phase science theme was also developed. The UP mission concept calls for the use of a Mars Express/Rosetta-type platform to launch on a Soyuz-Fregat in 2021 and entering into an eccentric polar orbit around Uranus in the 2036-2037 timeframe. The science payload has a strong heritage in Europe and beyond and requires no significant technology developments.
  •  
3.
  • Ehrich, Dorothee, et al. (författare)
  • Documenting lemming population change in the Arctic : Can we detect trends?
  • 2020
  • Ingår i: Ambio. - : Springer Science and Business Media LLC. - 0044-7447 .- 1654-7209. ; 49:3, s. 786-800
  • Tidskriftsartikel (refereegranskat)abstract
    • Lemmings are a key component of tundra food webs and changes in their dynamics can affect the whole ecosystem. We present a comprehensive overview of lemming monitoring and research activities, and assess recent trends in lemming abundance across the circumpolar Arctic. Since 2000, lemmings have been monitored at 49 sites of which 38 are still active. The sites were not evenly distributed with notably Russia and high Arctic Canada underrepresented. Abundance was monitored at all sites, but methods and levels of precision varied greatly. Other important attributes such as health, genetic diversity and potential drivers of population change, were often not monitored. There was no evidence that lemming populations were decreasing in general, although a negative trend was detected for low arctic populations sympatric with voles. To keep the pace of arctic change, we recommend maintaining long-term programmes while harmonizing methods, improving spatial coverage and integrating an ecosystem perspective.
  •  
4.
  • Gauthier, Gilles, et al. (författare)
  • Taking the beat of the Arctic : are lemming population cycles changing due to winter climate?
  • 2024
  • Ingår i: Proceedings of the Royal Society of London. Biological Sciences. - : Royal Society. - 0962-8452 .- 1471-2954. ; 291:2016
  • Tidskriftsartikel (refereegranskat)abstract
    • Reports of fading vole and lemming population cycles and persisting low populations in some parts of the Arctic have raised concerns about the spread of these fundamental changes to tundra food web dynamics. By compiling 24 unique time series of lemming population fluctuations across the circumpolar region, we show that virtually all populations displayed alternating periods of cyclic/non-cyclic fluctuations over the past four decades. Cyclic patterns were detected 55% of the time (n = 649 years pooled across sites) with a median periodicity of 3.7 years, and non-cyclic periods were not more frequent in recent years. Overall, there was an indication for a negative effect of warm spells occurring during the snow onset period of the preceding year on lemming abundance. However, winter duration or early winter climatic conditions did not differ on average between cyclic and non-cyclic periods. Analysis of the time series shows that there is presently no Arctic-wide collapse of lemming cycles, even though cycles have been sporadic at most sites during the last decades. Although non-stationary dynamics appears a common feature of lemming populations also in the past, continued warming in early winter may decrease the frequency of periodic irruptions with negative consequences for tundra ecosystems.
  •  
5.
  • Keogan, Katharine, et al. (författare)
  • Global phenological insensitivity to shifting ocean temperatures among seabirds
  • 2018
  • Ingår i: Nature Climate Change. - : Springer Science and Business Media LLC. - 1758-678X .- 1758-6798. ; 8:4, s. 313-318
  • Tidskriftsartikel (refereegranskat)abstract
    • Reproductive timing in many taxa plays a key role in determining breeding productivity(1), and is often sensitive to climatic conditions(2). Current climate change may alter the timing of breeding at different rates across trophic levels, potentially resulting in temporal mismatch between the resource requirements of predators and their prey(3). This is of particular concern for higher-trophic-level organisms, whose longer generation times confer a lower rate of evolutionary rescue than primary producers or consumers(4). However, the disconnection between studies of ecological change in marine systems makes it difficult to detect general changes in the timing of reproduction(5). Here, we use a comprehensive meta-analysis of 209 phenological time series from 145 breeding populations to show that, on average, seabird populations worldwide have not adjusted their breeding seasons over time (-0.020 days yr(-1)) or in response to sea surface temperature (SST) (-0.272 days degrees C-1) between 1952 and 2015. However, marked between-year variation in timing observed in resident species and some Pelecaniformes and Suliformes (cormorants, gannets and boobies) may imply that timing, in some cases, is affected by unmeasured environmental conditions. This limited temperature-mediated plasticity of reproductive timing in seabirds potentially makes these top predators highly vulnerable to future mismatch with lower-trophic-level resources(2).
  •  
6.
  • Meyer, Nicolas, et al. (författare)
  • Behavioural responses of breeding arctic sandpipers to ground-surface temperature and primary productivity
  • 2021
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 755
  • Tidskriftsartikel (refereegranskat)abstract
    • Most birds incubate their eggs, which requires time and energy at the expense of other activities. Birds generally have two incubation strategies: biparental where both mates cooperate in incubating eggs, and uniparental where a single parent incubates. In harsh and unpredictable environments, incubation is challenging due to high energetic demands and variable resource availability. We studied the relationships between the incubation behaviour of sandpipers (genus Calidris) and two environmental variables: temperature and a proxy of primary productivity (i.e. NDVI). We investigated how these relationships vary between incubation strategies and across species among strategies. We also studied how the relationship between current temperature and incubation behaviour varies with previous day's temperature. We monitored the incubation behaviour of nine sandpiper species using thermologgers at 15 arctic sites between 2016 and 2019. We also used thermologgers to record the ground surface temperature at conspecific nest sites and extracted NDVI values from a remote sensing product. We found no relationship between either environmental variables and biparental incubation behaviour. Conversely, as ground-surface temperature increased, uniparental species decreased total duration of recesses (TDR) and mean duration of recesses (MDR), but increased number of recesses (NR). Moreover, small species showed stronger relationships with ground-surface temperature than large species. When all uniparental species were combined, an increase in NDVI was correlated with higher mean duration, total duration and number of recesses, but relationships varied widely across species. Finally, some uniparental species showed a lag effect with a higher nest attentiveness after a warm day while more recesses occurred after a cold day than was predicted based on current temperatures. We demonstrate the complex interplay between shorebird incubation strategies, incubation behaviour, and environmental conditions. Understanding how species respond to changes in their environment during incubation helps predict their future reproductive success.
  •  
7.
  • Meyer, Nicolas, et al. (författare)
  • Nest attentiveness drives nest predation in arctic sandpipers
  • 2020
  • Ingår i: Oikos. - : Wiley. - 0030-1299 .- 1600-0706. ; 129:10, s. 1481-1492
  • Tidskriftsartikel (refereegranskat)abstract
    • Most birds incubate their eggs to allow embryo development. This behaviour limits the ability of adults to perform other activities. Hence, incubating adults trade off incubation and nest protection with foraging to meet their own needs. Parents can either cooperate to sustain this tradeoff or incubate alone. The main cause of reproductive failure at this reproductive stage is predation and adults reduce this risk by keeping the nest location secret. Arctic sandpipers are interesting biological models to investigate parental care evolution as they may use several parental care strategies. The three main incubation strategies include both parents sharing incubation duties ('biparental'), one parent incubating alone ('uniparental'), or a flexible strategy with both uniparental and biparental incubation within a population ('mixed'). By monitoring the incubation behaviour in 714 nests of seven sandpiper species across 12 arctic sites, we studied the relationship between incubation strategy and nest predation. First, we described how the frequency of incubation recesses (NR), their mean duration (MDR), and the daily total duration of recesses (TDR) vary among strategies. Then, we examined how the relationship between the daily predation rate and these components of incubation behaviour varies across strategies using two complementary survival analysis. For uniparental and biparental species, the daily predation rate increased with the daily total duration of recesses and with the mean duration of recesses. In contrast, daily predation rate increased with the daily number of recesses for biparental species only. These patterns may be attributed to two independent mechanisms: cryptic incubating adults are more difficult to locate than unattended nests and adults departing the nest or feeding close to the nest can draw predators' attention. Our results demonstrate that incubation behaviour as mediated by incubation strategy has important consequences for sandpipers' reproductive success.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy