SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Soffitta P.) "

Sökning: WFRF:(Soffitta P.)

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Feroci, M., et al. (författare)
  • The large observatory for x-ray timing
  • 2014
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 9780819496126
  • Konferensbidrag (refereegranskat)abstract
    • The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final downselection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supranuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m2 effective area, 2-30 keV, 240 eV spectral resolution, 1° collimated field of view) and a Wide Field Monitor (WFM, 2-50 keV, 4 steradian field of view, 1 arcmin source location accuracy, 300 eV spectral resolution). The WFM is equipped with an on-board system for bright events (e.g. GRB) localization. The trigger time and position of these events are broadcast to the ground within 30 s from discovery. In this paper we present the status of the mission at the end of its Phase A study.
  •  
2.
  • Feroci, M., et al. (författare)
  • LOFT - The large observatory for x-ray timing
  • 2012
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE - International Society for Optical Engineering. - 9780819491442 ; , s. 84432D-
  • Konferensbidrag (refereegranskat)abstract
    • The LOFT mission concept is one of four candidates selected by ESA for the M3 launch opportunity as Medium Size missions of the Cosmic Vision programme. The launch window is currently planned for between 2022 and 2024. LOFT is designed to exploit the diagnostics of rapid X-ray flux and spectral variability that directly probe the motion of matter down to distances very close to black holes and neutron stars, as well as the physical state of ultradense matter. These primary science goals will be addressed by a payload composed of a Large Area Detector (LAD) and a Wide Field Monitor (WFM). The LAD is a collimated (<1 degree field of view) experiment operating in the energy range 2-50 keV, with a 10 m2 peak effective area and an energy resolution of 260 eV at 6 keV. The WFM will operate in the same energy range as the LAD, enabling simultaneous monitoring of a few-steradian wide field of view, with an angular resolution of <5 arcmin. The LAD and WFM experiments will allow us to investigate variability from submillisecond QPO's to yearlong transient outbursts. In this paper we report the current status of the project.
  •  
3.
  • Feroci, M., et al. (författare)
  • The Large Observatory for X-ray Timing (LOFT)
  • 2012
  • Ingår i: Experimental Astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 34:2, s. 415-444
  • Tidskriftsartikel (refereegranskat)abstract
    • High-time-resolution X-ray observations of compact objects provide direct access to strong-field gravity, to the equation of state of ultradense matter and to black hole masses and spins. A 10 m(2)-class instrument in combination with good spectral resolution is required to exploit the relevant diagnostics and answer two of the fundamental questions of the European Space Agency (ESA) Cosmic Vision Theme "Matter under extreme conditions", namely: does matter orbiting close to the event horizon follow the predictions of general relativity? What is the equation of state of matter in neutron stars? The Large Observatory For X-ray Timing (LOFT), selected by ESA as one of the four Cosmic Vision M3 candidate missions to undergo an assessment phase, will revolutionise the study of collapsed objects in our galaxy and of the brightest supermassive black holes in active galactic nuclei. Thanks to an innovative design and the development of large-area monolithic silicon drift detectors, the Large Area Detector (LAD) on board LOFT will achieve an effective area of similar to 12 m(2) (more than an order of magnitude larger than any spaceborne predecessor) in the 2-30 keV range (up to 50 keV in expanded mode), yet still fits a conventional platform and small/medium-class launcher. With this large area and a spectral resolution of < 260 eV, LOFT will yield unprecedented information on strongly curved spacetimes and matter under extreme conditions of pressure and magnetic field strength.
  •  
4.
  • Donnarumma, I., et al. (författare)
  • Multiwavelength Observations of 3C 454.3. II. The AGILE 2007 December Campaign
  • 2009
  • Ingår i: Astrophysical Journal Letters. - 2041-8205. ; 707:2, s. 1115-1123
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the second Astrorivelatore Gamma a Immagini Leggero (AGILE) multiwavelength campaign of the blazar 3C 454.3 during the first half of 2007 December. This campaign involved AGILE, Spitzer, Swift, Suzaku, the Whole Earth Blazar Telescope (WEBT) consortium, the Rapid Eye Mount (REM), and the Multicolor Imaging Telescopes for Survey and Monstrous Explosions (MITSuME) telescopes, offering a broadband coverage that allowed for a simultaneous sampling of the synchrotron and inverse Compton (IC) emissions. The two-week AGILE monitoring was accompanied by radio to optical monitoring by WEBT and REM, and by sparse observations in mid-infrared and soft/ hard X-ray energy bands performed by means of Target of Opportunity observations by Spitzer, Swift, and Suzaku, respectively. The source was detected with an average flux of similar to 250 x 10(-8) photons cm(-2) s(-1) above 100 MeV, typical of its flaring states. The simultaneous optical and gamma-ray monitoring allowed us to study the time lag associated with the variability in the two energy bands, resulting in a possible <= one-day delay of the gamma-ray emission with respect to the optical one. From the simultaneous optical and gamma-ray fast flare detected on December 12, we can constrain the delay between the gamma-ray and optical emissions within 12 hr. Moreover, we obtain three spectral energy distributions (SEDs) with simultaneous data for 2007 December 5, 13, and 15, characterized by the widest multifrequency coverage. We found that a model with an external Compton on seed photons by a standard disk and reprocessed by the broad-line regions does not describe in a satisfactory way the SEDs of 2007 December 5, 13, and 15. An additional contribution, possibly from the hot corona with T = 10(6) K surrounding the jet, is required to account simultaneously for the softness of the synchrotron and the hardness of the IC emissions during those epochs.
  •  
5.
  • Pellizzoni, A., et al. (författare)
  • Detection of Gamma-Ray Emission from the Vela Pulsar Wind Nebula with AGILE
  • 2010
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 327:5966, s. 663-665
  • Tidskriftsartikel (refereegranskat)abstract
    • Pulsars are known to power winds of relativistic particles that can produce bright nebulae by interacting with the surrounding medium. These pulsar wind nebulae are observed by their radio, optical, and x-ray emissions, and in some cases also at TeV (teraelectron volt) energies, but the lack of information in the gamma-ray band precludes drawing a comprehensive multiwavelength picture of their phenomenology and emission mechanisms. Using data from the AGILE satellite, we detected the Vela pulsar wind nebula in the energy range from 100 MeV to 3 GeV. This result constrains the particle population responsible for the GeV emission and establishes a class of gamma-ray emitters that could account for a fraction of the unidentified galactic gamma-ray sources.
  •  
6.
  • Chen, A. W., et al. (författare)
  • Calibration of AGILE-GRID with in-flight data and Monte Carlo simulations
  • 2013
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 558, s. A37-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. AGILE is a γ-ray astrophysics mission which has been in orbit since 23 April 2007 and continues to operate reliably. The γ-ray detector, AGILE-GRID, has observed Galactic and extragalactic sources, many of which were collected in the first AGILE Catalog. Aims. We present the calibration of the AGILE-GRID using in-flight data and Monte Carlo simulations, producing instrument response functions (IRFs) for the effective area (A eff), energy dispersion probability (EDP), and point spread function (PSF), each as a function of incident direction in instrument coordinates and energy. Methods. We performed Monte Carlo simulations at different γ-ray energies and incident angles, including background rejection filters and Kalman filter-based γ-ray reconstruction. Long integrations of in-flight observations of the Vela, Crab and Geminga sources in broad and narrow energy bands were used to validate and improve the accuracy of the instrument response functions. Results. The weighted average PSFs as a function of spectra correspond well to the data for all sources and energy bands. Conclusions. Changes in the interpolation of the PSF from Monte Carlo data and in the procedure for construction of the energy-weighted effective areas have improved the correspondence between predicted and observed fluxes and spectra of celestial calibration sources, reducing false positives and obviating the need for post-hoc energy-dependent scaling factors. The new IRFs have been publicly available from the AGILE Science Data Center since November 25, 2011, while the changes in the analysis software will be distributed in an upcoming release.
  •  
7.
  • Feroci, M., et al. (författare)
  • Monitoring the hard X-ray sky with SuperAGILE
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 510, s. A9-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context SuperAGILE is the hard X-ray monitor of the AGILE gamma ray mission, in orbit since 23 April 2007. It is an imaging experiment based on a set of four independent silicon strip detectors, equipped with one-dimensional coded masks, operating in the nominal energy range 18-60 keV. Aims. The main goal of SuperAGILE is the observation of cosmic sources simultaneously with the main gamma-ray AGILE experiment, the Gamma Ray Imaging Detector (GRID). Given its similar to steradian-wide field of view and its similar to 15 mCrab day-sensitivity, SuperAGILE is also well suited to the long-term monitoring of Galactic compact objects and the detection of bright transients. Methods. The SuperAGILE detector properties and design allow for a 6 arcmin angular resolution in each of the two independent orthogonal projections of the celestial coordinates. Photon by photon data are continuously available by means of experiment telemetry, and are used to derive images and fluxes of individual sources, with integration times depending on the source intensity and position in the field of view. Results. We report on the main scientific results achieved by SuperAGILE over its first two years in orbit, until April 2009. The scientific observations started in mid-July 2007, with the science verification phase, continuing during the complete AGILE Cycle 1 and the first similar to half of Cycle 2. Despite the largely non-uniform sky coverage, due to the pointing strategy of the AGILE mission, a few tens of Galactic sources were monitored, sometimes for unprecedently long continuous periods, leading to the detection also of several bursts and outbursts. Approximately one gamma ray burst per month was detected and localized, allowing for prompt multi-wavelength observations. A few extragalactic sources in bright states were occasionally detected as well. The light curves of sources measured by SuperAGILE are made publicly available on the web in almost real-time. To enable a proper scientific use of these, we provide the reader with the relevant scientific and technical background.
  •  
8.
  • Giuliani, A., et al. (författare)
  • AGILE Detection of Delayed Gamma-ray Emission From the Short Gamma-Ray Burst GRB 090510
  • 2010
  • Ingår i: Astrophysical Journal Letters. - 2041-8205. ; 708:2, s. L84-L88
  • Tidskriftsartikel (refereegranskat)abstract
    • Short gamma-ray bursts (GRBs), typically lasting less than 2 s, are a special class of GRBs of great interest. We report the detection by the AGILE satellite of the short GRB 090510 which shows two clearly distinct emission phases: a prompt phase lasting similar to 200 ms and a second phase lasting tens of seconds. The prompt phase is relatively intense in the 0.3-10 MeV range with a spectrum characterized by a large peak/cutoff energy near 3 MeV; in this phase, no significant high-energy gamma-ray emission is detected. At the end of the prompt phase, intense gamma-ray emission above 30 MeV is detected showing a power-law time decay of the flux of the type t(-1.3) and a broadband spectrum remarkably different from that of the prompt phase. It extends from sub-MeV to hundreds of MeV energies with a photon index alpha similar or equal to 1.5. GRB 090510 provides the first case of a short GRB with delayed gamma-ray emission. We present the timing and spectral data of GRB 090510 and briefly discuss its remarkable properties within the current models of gamma-ray emission of short GRBs.
  •  
9.
  • Longo, F., et al. (författare)
  • Upper limits on the high-energy emission from gamma-ray bursts observed by AGILE-GRID
  • 2012
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 547, s. A95-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The detection and the characterization of the highenergy emission component from individual gamma-ray bursts (GRBs) is one of the key science objectives of the currently operating gamma-ray satellite AGILE, launched in April 2007. In its first two years of operation AGILE detected three GRBs with photons of energy larger than 30 MeV. One more GRB was detected in AGILE third operation year, while operating in spinning mode. Aims. For the 64 other GRBs localized during the period July 2007 to October 2009 in the field of view of the AGILE Gamma-Ray Imaging Detector (GRID), but not detected by this instrument, we estimate the count and flux upper limits on the GRB high energy emission in the AGILE-GRID energy band (30 MeV-3 GeV). Methods. To calculate the count upper limits, we adopted a Bayesian approach. The flux upper limits are derived using several assumptions on the high-energy spectral behavior. For 28 GRBs with available prompt spectral information, a flux upper limit and the comparison with the expected flux estimated from spectral extrapolation of the Band spectrum to the 30 MeV-3 GeV band are provided. Moreover, upper limits on the flux under the assumption of an extra power law component dominating the 30 MeV-3 GeV band are calculated for all GRBs and considering four different values for the spectral photon index. Finally, we performed a likelihood upper limit on the possible delayed emission up to 1 h after the GRB. Results. The estimated flux upper limits range between 1 × 10 -4 and ∼2 × 10 -2 photons cm -2 s -1 and generally lie above the flux estimated from the extrapolation of the prompt emission in the 30 MeV-3 GeV band. A notable case is GRB 080721, where the AGILE-GRID upper limit suggests a steeper spectral index or the presence of a cut-off in the high energy part of the Band prompt spectrum. The four GRBs detected by AGILE-GRID show high-energy (30 MeV-3 GeV) to low-energy (1 keV-10 MeV) fluence ratios similar to those estimated in this paper for the 64 GRBs without GRID detection, favoring the possibility that AGILE-GRID detected only high-fluence, hard GRBs. From the flux upper limits derived in this work we put some constraint on high-energy radiation from the afterglow emission and from synchrotron self Compton emission in internal shocks.
  •  
10.
  • Longo, F., et al. (författare)
  • Variable and transient Galactic gamma-ray sources with AGILE
  • 2011
  • Ingår i: Nuovo Cimento della Societa Italiana di Fisica C. - 1124-1896. ; 34:3, s. 191-196
  • Tidskriftsartikel (refereegranskat)abstract
    • AGILE has been providing continous monitoring of the Galactic plane in its three years of operation. Thanks to its sensitivity at energies near 100 MeV, AGILE has observed variability and transient behaviour in a number of sources. Simultaneous hard-X-ray coverage, rapid alerts to the astronomical community, and multiwavelength campaigns have provided identifications for some of these sources and placed constraints on others. We provide an overview of these observations and their possible counterparts, including microquasars and colliding wind binaries.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy