SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Spong D.) "

Sökning: WFRF:(Spong D.)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Fenstermacher, M.E., et al. (författare)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Tidskriftsartikel (refereegranskat)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
5.
  •  
6.
  • Martin, P., et al. (författare)
  • Overview of the RFX fusion science program
  • 2011
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 51:9, s. 094023-
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper summarizes the main achievements of the RFX fusion science program in the period between the 2008 and 2010 IAEA Fusion Energy Conferences. RFX-mod is the largest reversed field pinch in the world, equipped with a system of 192 coils for active control of MHD stability. The discovery and understanding of helical states with electron internal transport barriers and core electron temperature >1.5 keV significantly advances the perspectives of the configuration. Optimized experiments with plasma current up to 1.8 MA have been realized, confirming positive scaling. The first evidence of edge transport barriers is presented. Progress has been made also in the control of first-wall properties and of density profiles, with initial first-wall lithization experiments. Micro-turbulence mechanisms such as ion temperature gradient and micro-tearing are discussed in the framework of understanding gradient-driven transport in low magnetic chaos helical regimes. Both tearing mode and resistive wall mode active control have been optimized and experimental data have been used to benchmark numerical codes. The RFX programme also provides important results for the fusion community and in particular for tokamaks and stellarators on feedback control of MHD stability and on three-dimensional physics. On the latter topic, the result of the application of stellarator codes to describe three-dimensional reversed field pinch physics will be presented.
  •  
7.
  • Martin, P., et al. (författare)
  • Overview of the RFX-mod fusion science programme
  • 2013
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 53:10, s. 104018-
  • Forskningsöversikt (refereegranskat)abstract
    • This paper reports the highlights of the RFX-mod fusion science programme since the last 2010 IAEA Fusion Energy Conference. The RFX-mod fusion science programme focused on two main goals: exploring the fusion potential of the reversed field pinch (RFP) magnetic configuration and contributing to the solution of key science and technology problems in the roadmap to ITER. Active control of several plasma parameters has been a key tool in this endeavour. New upgrades on the system for active control of magnetohydrodynamic (MHD) stability are underway and will be presented in this paper. Unique among the existing fusion devices, RFX-mod has been operated both as an RFP and as a tokamak. The latter operation has allowed the exploration of edge safety factor q edge < 2 with active control of MHD stability and studies concerning basic energy and flow transport mechanisms. Strong interaction has continued with the stellarator community in particular on the physics of helical states and on three-dimensional codes.
  •  
8.
  • Zuin, M., et al. (författare)
  • Overview of the RFX-mod fusion science activity
  • 2017
  • Ingår i: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 57:10
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper reports the main recent results of the RFX-mod fusion science activity. The RFX-mod device is characterized by a unique flexibility in terms of accessible magnetic configurations. Axisymmetric and helically shaped reversed-field pinch equilibria have been studied, along with tokamak plasmas in a wide range of q(a) regimes (spanning from 4 down to 1.2 values). The full range of magnetic configurations in between the two, the so-called ultra-low q ones, has been explored, with the aim of studying specific physical issues common to all equilibria, such as, for example, the density limit phenomenon. The powerful RFX-mod feedback control system has been exploited for MHD control, which allowed us to extend the range of experimental parameters, as well as to induce specific magnetic perturbations for the study of 3D effects. In particular, transport, edge and isotope effects in 3D equilibria have been investigated, along with runaway mitigations through induced magnetic perturbations. The first transitions to an improved confinement scenario in circular and D-shaped tokamak plasmas have been obtained thanks to an active modification of the edge electric field through a polarized electrode. The experiments are supported by intense modeling with 3D MHD, gyrokinetic, guiding center and transport codes. Proposed modifications to the RFX-mod device, which will enable further contributions to the solution of key issues in the roadmap to ITER and DEMO, are also briefly presented.
  •  
9.
  • Mikkelsen, D.R, et al. (författare)
  • Assessment of Transport in NCSX
  • 2007
  • Ingår i: Fusion Science and Technology. ; 51, s. 166-180
  • Tidskriftsartikel (refereegranskat)abstract
    • We explore whether the energy confinement and planned heating in the National Compact Stellarator Experiment (NCSX) are sufficient to test magnetohydrodynamic (MHD) stability limits, and whether the configuration is sufficiently quasi-axisymmetric to reduce the neoclassical ripple transport to low levels, thereby allowing tokamak-like transport. A zero-dimensional model with fixed profile shapes is related to global energy confinement scalings for stellarators and tokamaks, neoclassical transport properties are assessed with the DKES, NEO, and NCLASS codes, and a power balance code is used to predict temperature profiles. Reaching the NCSX goal of = 4% at low collisionality will require HISS-95 = 3, which is higher than the best achieved in present stellarators. However, this level of confinement is actually ~10% lower than that predicted by the ITER-97P tokamak L-mode scaling. By operating near the stellarator density limit, the required HISS-95 is reduced by 35%. The high degree of quasi-axisymmetry of the configuration and the self-consistent "ambipolar" electric field reduce the neoclassical ripple transport to a small fraction of the neoclassical axisymmetric transport. A combination of neoclassical and anomalous transport models produces pressure profile shapes that are within the range of those used to study the MHD stability of NCSX. We find that = 4% plasmas are "neoclassically accessible" and are compatible with large levels of anomalous transport in the plasma periphery.
  •  
10.
  • Paz-Soldan, C., et al. (författare)
  • Recent DIII-D advances in runaway electron measurement and model validation
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Novel measurements and modeling of runaway electron (RE) dynamics in DIII-D have resolved experimental discrepancies and validated predictions for ITER, improving confidence that RE avoidance and mitigation can be predictably achieved. Considering RE formation, first experimental assessments of the RE seed current demonstrates that present hot-tail theories are not yet accurate and require improved treatment of the pellet dynamics. Novel measurements of kinetic instabilities in the MHz-range have been made in the RE formation phase, with the intensity of these modes correlated with previously unexplained empirical thresholds for RE generation. Controlled RE dissipation experiments in quiescent regimes have validated RE distribution function dependencies on collisional and synchrotron damping, both in terms of distribution function shape and dissipation rates. Measurements of RE bremsstrahlung and synchrotron emission are now used in tandem to resolve energy and pitch-angle effects. A resolution to long-standing dissipation anomalies in the quiescent regime is offered by taking into account kinetic instability effects on RE phase-space dynamics. Kinetic instabilities in the 100-200 MHz range are directly observed, though modeling finds the largest dissipation arises from GHz range instabilities that are beyond the reach of existing diagnostics. Kinetic instabilities are also observed in the mature post-disruption RE plateau phase, so long as the collisional damping rate is reduced with low-Z injection. Experiments with high-Z injection find that the dissipation rate saturates with injection quantity, likely due to neutral diffusion rates being slower than vertical instability rates in DIII-D. Considering the final loss, a 0D model for first-wall Joule heating is found to be in agreement with experiment, and controlled access to RE equilibria with edge safety factor of two identifies novel dynamics brought about by large-scale kink instabilities. These dynamics are typified by fast (tens of microseconds) RE loss rates without RE beam regeneration. The above measurements and comparison with theory represent significant advances in the understanding of RE dynamics and indicate possible new opportunities for RE avoidance or mitigation via kinetic instabilities.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy