SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sracek O.) "

Sökning: WFRF:(Sracek O.)

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Bhattacharya, Prosun, et al. (författare)
  • Distribution and mobility of arsenic in the Rio Dulce alluvial aquifers in Santiago del Estero Province, Argentina
  • 2006
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 358:1-3, s. 97-120
  • Tidskriftsartikel (refereegranskat)abstract
    • Factors controlling arsenic (As) mobilization in the aquifers of the Rio Dulce alluvial cone were investigated. Groundwater analyses show severe As contamination (average concentration of 743 mu g/L) from geogenic sources, but spatial variability of As concentration is considerable. Sequential leaching of sediment samples from unsaturated zone using de-ionised water, bicarbonate, acetate, and oxalate extracted As to different extents. Sediment oxalate extraction showed that Al and Mn oxide and hydroxides are more abundant than Fe oxides and hydroxides, in spite of similar total Fe, Mn, and Al concentrations in the sediment. Speciation calculations performed for saturated zone samples indicated that Fe and Al oxides and hydroxides are stable in groundwater, suggesting that As adsorption processes may be to some extent controlled by the presence of Fe and Al mineral phases. Principal Component Analysis (PCA) showed that As is related to F, V, Mo, B, Si, most likely due to their common origin in volcanic ash. This suggests the volcanic ash as the probable source of groundwater As. Locally, elevated pH values linked to carbonate dissolution, cation exchange, and dissolution of silicates promote release of adsorbed As. Another factor contributing to the release of As locally may be the input of organic matter from excessive irrigation. The conceptual model of As release includes: i) As influx from dissolution of volcanic glass in volcanic ash, ii) adsorption of As on the surface of Fe and Al mineral phases in relatively low pH zones, and iii) high mobility of As in high pH zones. Future work should be focused on the determination of mineralogical forms of As in volcanic ash and on detailed investigation on factors controlling As mobility.
  •  
5.
  • Bhattacharya, Prosun, et al. (författare)
  • Groundwater characteristics in the shallow aquifers of Huhhot region in Inner Mongolia, PR China : Implications on the mobilisation of arsenic
  • 2006
  • Ingår i: Natural Arsenic in Groundwaters of Latin America. ; , s. 11-12
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Elevated arsenic (As) concentration ingroundwater is becoming a worldwide problem. In Huhhot Alluvial Basin (HAB) in  Inner Mongolia, People’s Republic ofChina, a population of over a million isexposed to severe health risk due to theconsumption of groundwater with high Asconcentration. In some arsenic seriouslyaffected areas, As concentration reach 1491µg L-1, 149 times over WHO’s drinkingwater guideline value for As and exceed theChinese drinking water standard by a factorof 30 times. Due to the acute shortage ofsafe water supply and inefficient watermanagement system, people are compelledto drink groundwater with high As concentration. Long period ingestion of water withhigh As concentration have lead to chronicarsenic poisoning among the residents ofthe region. This present work deals with thehydrogeochemical characterisation of thegroundwater of the shallow alluvial aquifers and their implications on the chemistryand its relation to the mechanism of Asmobilization in the HAB.Groundwater samples were collected during October 2003, from 29 sites in the village of Tie Men Jing, located about 100 kmfrom Inner Mongolia’s capital Huhhot. ThepH, redox potential (Eh), temperature andelectrical conductivity were measured atsites while major ions, trace elements including As total and As (III) were analyzedin laboratories at the Royal Institute ofTechnology and Stockholm University inSweden. Groundwater is generally neutralto alkaline and the pH varies from 6.67 to8.7. The redox potential (Eh) lies between74 and 669 mV. The electrical conductivity(EC) range varies from 581 to 5200 µS cm-1. Temperature ranges from 9.1 to 13.5 °C.Depths of wells are from 4 m to 75 m.Groundwater is mostly of Na-Mg-HCO3-Cl-type and dominated by HCO3-and Cl-asthe predominant anions. The concentrationsof SO42-range between 0.3 and 172.8 mg L-1and there is a trend of decreasing sulfateconcentrations with increase in well depth.The levels of NO3-were lower than theWHO´s guideline value of 50 mg L-1in 27wells. These high NO3-concentrations  could have been caused by anthropogeniccontamination due to the sanitation practices.The PO43-concentration ranges between 0.04to 2.6 mg L-1.Total As concentration ranged from belowdetect limit (5.2 µg L-1) to 141 µg L-1. In 28of the investigated wells, As levels exceededWHO’s guideline value 10 µg L-1and 17wells exceeded Chinese standard 50 µg L-1.Among the 42 groundwater samples of theshallow aquifers only three complied withthe WHO drinking water guideline value forAs. The dominant species in the groundwaterwas As (III). In the 29 wells of Tie MenJing, the concentration of Fe and Mn –exceeded the WHO’s guideline value by afactor of 10.The aquifers are composed of Quaternary(mainly Holocene) fluvial and lacustrinesediments. High As occurring in anaerobicgroundwater in low-lying areas is associatedwith high concenrations of dissolved Fe andMn. Improved water supply system, employment new water and energy resources,poverty fighting and expertise cooperationare recommended to solve Huhhot basinrural area’s drinking water problem.
  •  
6.
  •  
7.
  • Bundschuh, J., et al. (författare)
  • Arsenic in Latin America : New findings on source, mobilization and mobility in human environments in 20 countries based on decadal research 2010-2020
  • 2020
  • Ingår i: Critical reviews in environmental science and technology. - : Taylor and Francis Inc.. - 1064-3389 .- 1547-6537. ; , s. 1-119
  • Forskningsöversikt (refereegranskat)abstract
    • Today (year 2020), the globally recognized problem of arsenic (As) contamination of water resources and other environments at toxic levels has been reported in all of the 20 Latin American countries. The present review indicates that As is prevalent in 200 areas across these countries. Arsenic is naturally released into the environment and mobilized from geogenic sources comprising: (i) volcanic rocks and emissions, the latter being transported over thousands of kilometers from the source, (ii) metallic mineral deposits, which get exposed to human beings and livestock through drinking water or food chain, and (iii) As-rich geothermal fluids ascending from deep geothermal reservoirs contaminate freshwater sources. The challenge for mitigation is increased manifold by mining and related activities, as As from mining sites is transported by rivers over long distances and even reaches and contaminates coastal environments. The recognition of the As problem by the authorities in several countries has led to various actions for remediation, but there is a lack of long-term strategies for such interventions. Often only total As concentration is reported, while data on As sources, mobilization, speciation, mobility and pathways are lacking which is imperative for assessing quality of any water source, i.e. public and private.
  •  
8.
  • Bundschuh, Jochen, et al. (författare)
  • Hydrogeochemistry principles for geochemical modeling
  • 2011
  • Ingår i: Geochemical Modeling of Groundwater, Vadose and Geothermal Systems. - : CRC Press. - 9781439870532 - 9781138074446 ; , s. 3-26
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • A wide diversity of physical and chemical processes control the distribution of species in waters in the vadose zone above the water table, and in the saturated zone below. The mineralogical composition of rocks or sediments, chemical reactions between solid, aqueous and gas phases, and oxidation/reduction (redox) processes are principal factors that influence the chemical composition of vadose-zone, ground-and surface waters, and the concentrations and mobilities of individual species. 
  •  
9.
  •  
10.
  • Mahanta, C., et al. (författare)
  • Hydrogeochemical controls on mobilization of arsenic in groundwater of a part of Brahmaputra river floodplain, India
  • 2015
  • Ingår i: Journal of Hydrology: Regional Studies. - : Elsevier BV. - 2214-5818.
  • Tidskriftsartikel (refereegranskat)abstract
    • Study region: Arsenic enriched groundwater regime within low-industrialized Brahmaputra floodplains in Assam, NE India. Study focus: We examined the origin, distribution and processes of As release by investigating the salient groundwater chemistry and subsurface sedimentological characteristics. Besides collection of groundwater samples from domestic and public water supply wells, sediment samples from boreholes were investigated for textural and colour linkages. New hydrological insights for the region: Arsenic concentrations above the WHO guideline value of 10. μg/L were present in 33 wells and above the previous Indian national drinking standard of 50. μg/L were present in 15 wells. The green-olive colour sediments were more likely to yield As-enriched groundwater. The supersaturation of groundwater with respect to Fe(II) minerals, such as siderite and vivianite, explained the poor correlation between dissolved As and Fe. The result reinforced the phenomenon of reductive dissolution of Fe(III) oxyhydroxides releasing As to groundwater. This study throws light on the processes and mechanisms involved with As release in groundwater. The homogenous floodplain terrain makes the hydrological As imprint unambiguous and the hydrogeological signatures untarnished. Considering the absence of anthropogenic sources in the study area, the conclusions on the nature and causes for As release to groundwater looked dependable although the final contamination at specific subsurface sites would be influenced by advection-dispersion of groundwater flow accompanied by retardation, ion exchange, surface complexation and possible biodegradation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy