SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stavrinidou Eleni) "

Sökning: WFRF:(Stavrinidou Eleni)

  • Resultat 1-10 av 52
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Franco Gonzalez, Juan Felipe, et al. (författare)
  • Morphology of a self-doped conducting oligomer for green energy applications
  • 2017
  • Ingår i: Nanoscale. - : Royal Society of Chemistry. - 2040-3364 .- 2040-3372. ; 9:36, s. 13717-13724
  • Tidskriftsartikel (refereegranskat)abstract
    • A recently synthesized self-doped conducting oligomer, salt of bis[3,4-ethylenedioxythiophene]3thiophene butyric acid, ETE-S, is a novel promising material for green energy applications. Recently, it has been demonstrated that it can polymerize in vivo, in plant systems, leading to a formation of long-range conducting wires, charge storage and supercapacitive behaviour of living plants. Here we investigate the morphology of ETE-S combining the experimental characterisation using Grazing Incidence Wide Angle X-ray Scattering (GIWAXS) and atomistic molecular dynamics (MD) simulations. The GIWAXS measurements reveal a formation of small crystallites consisting of π–π stacked oligomers (with the staking distance 3.5 Å) that are further organized in h00 lamellae. These experimental results are confirmed by MD calculations, where we calculated the X-ray diffraction pattern and the radial distribution function for the distance between ETE-S chains. Our MD simulations also demonstrate the formation of the percolative paths for charge carriers that extend throughout the whole structure, despite the fact that the oligomers are short (6–9 rings) and crystallites are thin along the π–π stacking direction, consisting of only two or three π–π stacked oligomers. The existence of the percolative paths explains the previously observed high conductivity in in vivo polymerized ETE-S. We also explored the geometrical conformation of ETE-S oligomers and the bending of their aliphatic chains as a function of the oligomer lengths.
  •  
2.
  • Mantione, Daniele, et al. (författare)
  • Thiophene-Based Trimers for In Vivo Electronic Functionalization of Tissues
  • 2020
  • Ingår i: ACS APPLIED ELECTRONIC MATERIALS. - : AMER CHEMICAL SOC. - 2637-6113. ; 2:12, s. 4065-4071
  • Tidskriftsartikel (refereegranskat)abstract
    • Electronic materials that can self-organize in vivo and form functional components along the tissue of interest can result in a seamless integration of the bioelectronic interface. Previously, we presented in vivo polymerization of the conjugated oligomer ETE-S in plants, forming conductors along the plant structure. The EDOT-thiophene-EDOT trimer with a sulfonate side group polymerized due to the native enzymatic activity of the plant and integrated within the plant cell wall. Here, we present the synthesis of three different conjugated trimers based on thiophene and EDOT or purely EDOT trimers that are able to polymerize enzymatically in physiological pH in vitro as well as in vivo along the roots of living plants. We show that by modulating the backbone and the side chain, we can tune the electronic properties of the resulting polymers as well as their localization and penetration within the root. Our work paves the way for the rational design of electronic materials that can self-organize in vivo for spatially controlled electronic functionalization of living tissue.
  •  
3.
  • Oikonomou, Vasileios, et al. (författare)
  • eSoil : A low-power bioelectronic growth scaffold that enhances crop seedling growth
  • 2024
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : NATL ACAD SCIENCES. - 0027-8424 .- 1091-6490. ; 121:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Active hydroponic substrates that stimulate on demand the plant growth have not been demonstrated so far. Here, we developed the eSoil, a low-power bioelectronic growth scaffold that can provide electrical stimulation to the plants' root system and growth environment in hydroponics settings. eSoil's active material is an organic mixed ionic electronic conductor while its main structural component is cellulose, the most abundant biopolymer. We demonstrate that barley seedlings that are widely used for fodder grow within the eSoil with the root system integrated within its porous matrix. Simply by polarizing the eSoil, seedling growth is accelerated resulting in increase of dry weight on average by 50% after 15 d of growth. The effect is evident both on root and shoot development and occurs during the growth period after the stimulation. The stimulated plants reduce and assimilate NO-3more efficiently than controls, a finding that may have implications on minimizing fertilizer use. However, more studies are required to provide a mechanistic understanding of the physical and biological processes involved. eSoil opens the pathway for the development of active hydroponic scaffolds that may increase crop yield in a sustainable manner.
  •  
4.
  • Parker, Daniela, et al. (författare)
  • Biohybrid plants with electronic roots via in vivo polymerization of conjugated oligomers
  • 2021
  • Ingår i: Materials Horizons. - : Royal Society of Chemistry. - 2051-6347 .- 2051-6355. ; 8:12, s. 3295-3305
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant processes, ranging from photosynthesis through production of biomaterials to environmental sensing and adaptation, can be used in technology via integration of functional materials and devices. Previously, plants with integrated organic electronic devices and circuits distributed in their vascular tissue and organs have been demonstrated. To circumvent biological barriers, and thereby access the internal tissue, plant cuttings were used, which resulted in biohybrids with limited lifetime and use. Here, we report intact plants with electronic functionality that continue to grow and develop enabling plant-biohybrid systems that fully maintain their biological processes. The biocatalytic machinery of the plant cell wall was leveraged to seamlessly integrate conductors with mixed ionic-electronic conductivity along the root system of the plants. Cell wall peroxidases catalyzed ETE-S polymerization while the plant tissue served as the template, organizing the polymer in a favorable manner. The conductivity of the resulting p(ETE-S) roots reached the order of 10 S cm(-1) and remained stable over the course of 4 weeks while the roots continued to grow. The p(ETE-S) roots were used to build supercapacitors that outperform previous plant-biohybrid charge storage demonstrations. Plants were not affected by the electronic functionalization but adapted to this new hybrid state by developing a more complex root system. Biohybrid plants with electronic roots pave the way for autonomous systems with potential applications in energy, sensing and robotics.
  •  
5.
  •  
6.
  • Routier, Cyril, et al. (författare)
  • Chitosan-modified polyethyleneimine nanoparticles for enhancing the carboxylation reaction and plants' CO2 uptake
  • 2023
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 17:4, s. 3430-3441
  • Tidskriftsartikel (refereegranskat)abstract
    • Increasing plants' photosynthetic efficiency is a major challenge that must be addressed in order to cover the food demands of the growing population in the changing climate. Photosynthesis is greatly limited at the initial carboxylation reaction, where CO2 is converted to the organic acid 3-PGA, catalyzed by the RuBisCO enzyme. RuBisCO has poor affinity for CO2, but also the CO2 concentration at the RuBisCO site is limited by the diffusion of atmospheric CO2 through the various leaf compartments to the reaction site. Beyond genetic engineering, nanotechnology can offer a materials-based approach for enhancing photosynthesis, and yet, it has mostly been explored for the light-dependent reactions. In this work, we developed polyethyleneimine-based nanoparticles for enhancing the carboxylation reaction. We demonstrate that the nanoparticles can capture CO2 in the form of bicarbonate and increase the CO2 that reacts with the RuBisCO enzyme, enhancing the 3-PGA production in in vitro assays by 20%. The nanoparticles can be introduced to the plant via leaf infiltration and, because of the functionalization with chitosan oligomers, they do not induce any toxic effect to the plant. In the leaves, the nanoparticles localize in the apoplastic space but also spontaneously reach the chloroplasts where photosynthetic activity takes place. Their CO2 loading-dependent fluorescence verifies that, in vivo, they maintain their ability to capture CO2 and can be therefore reloaded with atmospheric CO2 while in planta. Our results contribute to the development of a nanomaterials-based CO2-concentrating mechanism in plants that can potentially increase photosynthetic efficiency and overall plants' CO2 storage.
  •  
7.
  • Abdel Aziz, Ilaria, et al. (författare)
  • Drug delivery via a 3D electro-swellable conjugated polymer hydrogel
  • 2024
  • Ingår i: Journal of materials chemistry. B. - : ROYAL SOC CHEMISTRY. - 2050-750X .- 2050-7518.
  • Tidskriftsartikel (refereegranskat)abstract
    • Spatiotemporal controlled drug delivery minimizes side-effects and enables therapies that require specific dosing patterns. Conjugated polymers (CP) can be used for electrically controlled drug delivery; however so far, most demonstrations were limited to molecules up to 500 Da. Larger molecules could be incorporated only during the CP polymerization and thus limited to a single delivery. This work harnesses the record volume changes of a glycolated polythiophene p(g3T2) for controlled drug delivery. p(g3T2) undergoes reversible volumetric changes of up to 300% during electrochemical doping, forming pores in the nm-size range, resulting in a conducting hydrogel. p(g3T2)-coated 3D carbon sponges enable controlled loading and release of molecules spanning molecular weights of 800-6000 Da, from simple dyes up to the hormone insulin. Molecules are loaded as a combination of electrostatic interactions with the charged polymer backbone and physical entrapment in the porous matrix. Smaller molecules leak out of the polymer while larger ones could not be loaded effectively. Finally, this work shows the temporally patterned release of molecules with molecular weight of 1300 Da and multiple reloading and release cycles without affecting the on/off ratio.
  •  
8.
  • Abdel Aziz, Ilaria, et al. (författare)
  • Electrochemical modulation of mechanical properties of glycolated polythiophenes
  • 2024
  • Ingår i: Materials Horizons. - : ROYAL SOC CHEMISTRY. - 2051-6347 .- 2051-6355.
  • Tidskriftsartikel (refereegranskat)abstract
    • Electrochemical doping of organic mixed ionic-electronic conductors is key for modulating their conductivity, charge storage and volume enabling high performing bioelectronic devices such as recording and stimulating electrodes, transistors-based sensors and actuators. However, electrochemical doping has not been explored to the same extent for modulating the mechanical properties of OMIECs on demand. Here, we report a qualitative and quantitative study on how the mechanical properties of a glycolated polythiophene, p(g3T2), change in situ during electrochemical doping and de-doping. The Young's modulus of p(g3T2) changes from 69 MPa in the dry state to less than 10 MPa in the hydrated state and then further decreases down to 0.4 MPa when electrochemically doped. With electrochemical doping-dedoping the Young's modulus of p(g3T2) changes by more than one order of magnitude reversibly, representing the largest modulation reported for an OMIEC. Furthermore, we show that the electrolyte concentration affects the magnitude of the change, demonstrating that in less concentrated electrolytes more water is driven into the film due to osmosis and therefore the film becomes softer. Finally, we find that the oligo ethylene glycol side chain functionality, specifically the length and asymmetry, affects the extent of modulation. Our findings show that glycolated polythiophenes are promising materials for mechanical actuators with a tunable modulus similar to the range of biological tissues, thus opening a pathway for new mechanostimulation devices. This work investigates the changes in the mechanical properties of glycolated polythiophenes induced by electrochemical addressing and by electrolyte concentration, due to its ability to stabilize water.
  •  
9.
  • Ait-Mammar, Walid, et al. (författare)
  • All-Inkjet-Printed Humidity Sensors for the Detection of Relative Humidity in Air and Soil-Towards the Direct Fabrication on Plant Leaves
  • 2020
  • Ingår i: MRS Advances. - : CAMBRIDGE UNIV PRESS. - 2059-8521. ; 5:18-19, s. 965-973
  • Tidskriftsartikel (refereegranskat)abstract
    • We demonstrate the fabrication, by exclusive means of inkjet-printing, of capacitive relative humidity sensors on flexible, plastic substrate. These sensors can be successfully used for the measurement of relative-humidity in both air and common soil. We also show that the same technique may be used for the fabrication of the same type of sensors on the surface of the leaves of El AE gnus Ebbingei (silverberry).Our results demonstrate the suitability of leaves as substrate for printed electronics and pave the way to the next generation of sensors to be used in fields such as agriculture and flower farming.
  •  
10.
  • Armada Moreira, Adam, et al. (författare)
  • Benchmarking organic electrochemical transistors for plant electrophysiology
  • 2022
  • Ingår i: Frontiers in Plant Science. - : Frontiers Media SA. - 1664-462X. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Plants are able to sense and respond to a myriad of external stimuli, using different signal transduction pathways, including electrical signaling. The ability to monitor plant responses is essential not only for fundamental plant science, but also to gain knowledge on how to interface plants with technology. Still, the field of plant electrophysiology remains rather unexplored when compared to its animal counterpart. Indeed, most studies continue to rely on invasive techniques or on bulky inorganic electrodes that oftentimes are not ideal for stable integration with plant tissues. On the other hand, few studies have proposed novel approaches to monitor plant signals, based on non-invasive conformable electrodes or even organic transistors. Organic electrochemical transistors (OECTs) are particularly promising for electrophysiology as they are inherently amplification devices, they operate at low voltages, can be miniaturized, and be fabricated in flexible and conformable substrates. Thus, in this study, we characterize OECTs as viable tools to measure plant electrical signals, comparing them to the performance of the current standard, Ag/AgCl electrodes. For that, we focused on two widely studied plant signals: the Venus flytrap (VFT) action potentials elicited by mechanical stimulation of its sensitive trigger hairs, and the wound response of Arabidopsis thaliana. We found that OECTs are able to record these signals without distortion and with the same resolution as Ag/AgCl electrodes and that they offer a major advantage in terms of signal noise, which allow them to be used in field conditions. This work establishes these organic bioelectronic devices as non-invasive tools to monitor plant signaling that can provide insight into plant processes in their natural environment.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 52
Typ av publikation
tidskriftsartikel (42)
forskningsöversikt (6)
doktorsavhandling (4)
Typ av innehåll
refereegranskat (45)
övrigt vetenskapligt/konstnärligt (7)
Författare/redaktör
Stavrinidou, Eleni (38)
Berggren, Magnus (27)
Simon, Daniel (13)
Stavrinidou, Eleni, ... (11)
Gladisch, Johannes (7)
Moser, Maximilian (6)
visa fler...
McCulloch, Iain (6)
Bernacka Wojcik, Iwo ... (6)
Pavlopoulou, Eleni (6)
Zozoulenko, Igor (5)
Tybrandt, Klas (5)
Armada Moreira, Adam (5)
Manan Dar, Abdul Man ... (5)
Abdel Aziz, Ilaria (4)
Cloutet, Eric (4)
Hadziioannou, George ... (4)
Berggren, Magnus, Pr ... (4)
Gabrielsson, Roger (4)
Oikonomou, Vasileios (4)
Fabiano, Simone (3)
Griggs, Sophie (3)
Crispin, Xavier (3)
Ljung, Karin (3)
Näsholm, Torgny (3)
Berggren, Magnus, 19 ... (3)
Diacci, Chiara (3)
Khodagholy, Dion (3)
Biesmans, Hanne (2)
Brochon, Cyril (2)
Glowacki, Eric (2)
Gabrielsson, Erik (2)
Simon, Daniel T, 197 ... (2)
Bliman, David (2)
Šimura, Jan (2)
Olsson, Roger (2)
Linares, Mathieu (2)
Zrig, Samia (2)
Bridonneau, Nathalie (2)
Noel, Vincent (2)
Piro, Benoit (2)
Mattana, Giorgio (2)
Bech, Martin (2)
Jonsson, Magnus (2)
Costa, Alex (2)
Malliaras, George G. (2)
Mohammadi, Mohsen (2)
Huerta, Miriam (2)
Mulla, Yusuf (2)
Salleo, Alberto (2)
Gasparini, Nicola (2)
visa färre...
Lärosäte
Linköpings universitet (52)
Sveriges Lantbruksuniversitet (9)
Lunds universitet (5)
Göteborgs universitet (3)
Umeå universitet (1)
Kungliga Tekniska Högskolan (1)
visa fler...
Chalmers tekniska högskola (1)
RISE (1)
visa färre...
Språk
Engelska (52)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (37)
Teknik (22)
Medicin och hälsovetenskap (6)
Lantbruksvetenskap (5)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy