SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stedmon C.) "

Sökning: WFRF:(Stedmon C.)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Charette, M. A., et al. (författare)
  • The Transpolar Drift as a Source of Riverine and Shelf-Derived Trace Elements to the Central Arctic Ocean
  • 2020
  • Ingår i: Journal of Geophysical Research-Oceans. - : American Geophysical Union (AGU). - 2169-9275 .- 2169-9291. ; 125:5
  • Tidskriftsartikel (refereegranskat)abstract
    • A major surface circulation feature of the Arctic Ocean is the Transpolar Drift (TPD), a current that transports river-influenced shelf water from the Laptev and East Siberian Seas toward the center of the basin and Fram Strait. In 2015, the international GEOTRACES program included a high-resolution pan-Arctic survey of carbon, nutrients, and a suite of trace elements and isotopes (TEIs). The cruises bisected the TPD at two locations in the central basin, which were defined by maxima in meteoric water and dissolved organic carbon concentrations that spanned 600 km horizontally and similar to 25-50 m vertically. Dissolved TEIs such as Fe, Co, Ni, Cu, Hg, Nd, and Th, which are generally particle-reactive but can be complexed by organic matter, were observed at concentrations much higher than expected for the open ocean setting. Other trace element concentrations such as Al, V, Ga, and Pb were lower than expected due to scavenging over the productive East Siberian and Laptev shelf seas. Using a combination of radionuclide tracers and ice drift modeling, the transport rate for the core of the TPD was estimated at 0.9 +/- 0.4 Sv (10(6) m(3)s(-1)). This rate was used to derive the mass flux for TEIs that were enriched in the TPD, revealing the importance of lateral transport in supplying materials beneath the ice to the central Arctic Ocean and potentially to the North Atlantic Ocean via Fram Strait. Continued intensification of the Arctic hydrologic cycle and permafrost degradation will likely lead to an increase in the flux of TEIs into the Arctic Ocean. Plain Language Summary A major feature of the Arctic Ocean circulation is the Transpolar Drift (TPD), a surface current that carries ice and continental shelf-derived materials from Siberia across the North Pole to the North Atlantic Ocean. In 2015, an international team of oceanographers conducted a survey of trace elements in the Arctic Ocean, traversing the TPD. Near the North Pole, they observed much higher concentrations of trace elements in surface waters than in regions on either side of the current. These trace elements originated from land, and their journey across the Arctic Ocean is made possible by chemical reactions with dissolved organic matter that originates mainly in Arctic rivers. This study reveals the importance of rivers and shelf processes combined with strong ocean currents in supplying trace elements to the central Arctic Ocean and onward to the Atlantic. These trace element inputs are expected to increase as a result of permafrost thawing and increased river runoff in the Arctic, which is warming at a rate much faster than anywhere else on Earth. Since many of the trace elements are essential building blocks for ocean life, these processes could lead to significant changes in the marine ecosystems and fisheries of the Arctic Ocean.
  •  
2.
  • Charette, M, et al. (författare)
  • The Transpolar Drift as a Source of Riverine and Shelf‐Derived Trace Elements to the Central Arctic Ocean
  • 2020
  • Ingår i: Journal of Geophysical Research - Oceans. - 2169-9275 .- 2169-9291. ; 125, s. 1-34
  • Tidskriftsartikel (refereegranskat)abstract
    • A major surface circulation feature of the Arctic Ocean is the Transpolar Drift (TPD), a current that transports river‐influenced shelf water from the Laptev and East Siberian Seas toward the center of the basin and Fram Strait. In 2015, the international GEOTRACES program included a high‐resolution pan‐Arctic survey of carbon, nutrients, and a suite of trace elements and isotopes (TEIs). The cruises bisected the TPD at two locations in the central basin, which were defined by maxima in meteoric water and dissolved organic carbon concentrations that spanned 600 km horizontally and ~25–50 m vertically. Dissolved TEIs such as Fe, Co, Ni, Cu, Hg, Nd, and Th, which are generally particle‐reactive but can be complexed by organic matter, were observed at concentrations much higher than expected for the openocean setting. Other trace element concentrations such as Al, V, Ga, and Pb were lower than expected due to scavenging over the productive East Siberian and Laptev shelf seas. Using a combination of radionuclide tracers and ice drift modeling, the transport rate for the core of the TPD was estimated at 0.9 ± 0.4 Sv(106m3 s−1). This rate was used to derive the mass flux for TEIs that were enriched in the TPD, revealing the importance of lateral transport in supplying materials beneath the ice to the central Arctic Ocean and potentially to the North Atlantic Ocean via Fram Strait. Continued intensification of the Arctic hydrologicc ycle and permafrost degradation will likely lead to an increase in the flux of TEIs into the Arctic Ocean.
  •  
3.
  • Kothawala, Dolly, et al. (författare)
  • Inner filter correction of dissolved organic matter fluorescence
  • 2013
  • Ingår i: Limnology and Oceanography: Methods. - : Wiley. - 1541-5856. ; 11:DEC, s. 616-630
  • Tidskriftsartikel (refereegranskat)abstract
    • The fluorescence of dissolved organic matter (DOM) is suppressed by a phenomenon of self-quenching known as the inner filter effect (IFE). Despite widespread use of fluorescence to characterize DOM in surface waters, the advantages and constraints of IFE correction are poorly defined. We assessed the effectiveness of a commonly used absorbance-based approach (ABA), and a recently proposed controlled dilution approach (CDA) to correct for IFE. Linearity between corrected fluorescence and total absorbance (ATotal; the sum of absorbance at excitation and emission wavelengths) across the full excitation-emission matrix (EEM) in dilution series of four samples indicated both ABA and CDA were effective to an absorbance of at least 1.5 in a 1 cm cell, regardless of wavelength positioning. In regions of the EEMs where signal to background noise (S/N) was low, CDA correction resulted in more variability than ABA correction. From the ABA algorithm, the onset of significant IFE (>5%) occurs when absorbance exceeds 0.042. In these cases, IFE correction is required, which was the case for the vast majority (97%) of lakes in a nationwide survey (n= 554). For highly absorbing samples, undesirably large dilution factors would be necessary to reduce absorbance below 0.042. For rare EEMs with ATotal > 1.5 (3.0% of the lakes in the Swedish survey), a 2-fold dilution is recommended followed by ABA or CDA correction. This study shows that for the vast majority of natural DOM samples the most commonly applied ABA algorithm provides adequate correction without prior dilution. © 2013, by the American Society of Limnology and Oceanography, Inc.
  •  
4.
  •  
5.
  • Murphy, Kathleen, 1972, et al. (författare)
  • Fluorescence spectroscopy and multi-way techniques. PARAFAC
  • 2013
  • Ingår i: Analytical Methods. - : Royal Society of Chemistry (RSC). - 1759-9679 .- 1759-9660. ; 5:23, s. 6557-6566
  • Tidskriftsartikel (refereegranskat)abstract
    • PARAllel FACtor analysis (PARAFAC) is increasingly used to decompose fluorescence excitation emission matrices (EEMs) into their underlying chemical components. In the ideal case where fluorescence conforms to Beers Law, this process can lead to the mathematical identification and quantification of independently varying fluorophores. However, many practical and analytical hurdles stand between EEM datasets and their chemical interpretation. This article provides a tutorial in the practical application of PARAFAC to fluorescence datasets, demonstrated using a dissolved organic matter (DOM) fluorescence dataset. A new toolbox for MATLAB is presented to support improved visualisation and sensitivity analyses of PARAFAC models in fluorescence spectroscopy. © 2013 The Royal Society of Chemistry.
  •  
6.
  • Murphy, Kathleen, 1972, et al. (författare)
  • OpenFluor- an online spectral library of auto-fluorescence by organic compounds in the environment
  • 2014
  • Ingår i: Analytical Methods. - : Royal Society of Chemistry (RSC). - 1759-9679 .- 1759-9660. ; 6:3, s. 658-661
  • Tidskriftsartikel (refereegranskat)abstract
    • An online repository of published organic fluorescence spectra has been developed, which can be searched for quantitative matches with any set of unknown spectra. It fills a critical gap by increasing access to measured and modelled (PARAFAC) spectra, and linking across studies and systems to reveal "global" fluorescence trends.
  •  
7.
  • Reader, Heather, et al. (författare)
  • Seasonal contribution of terrestrial organic matter and biological oxygen demand to the Baltic Sea from three contrasting river catchments
  • 2014
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4189. ; 11:12, s. 3409-3419
  • Tidskriftsartikel (refereegranskat)abstract
    • To examine the potential influence of terrestrially derived DOM on the Baltic Sea, a year-long study of dissolved organic matter (DOM) was performed in three river catchments in Sweden. One catchment drains into the Bothnian Sea, while two southern catchments drain into the Baltic proper. Dissolved organic carbon (DOC) concentrations were positively correlated with discharge from forested catchments over the year. While the overall concentrations of DOC were several times higher in the southern two catchments, higher discharge in the northern catchment resulted in the annual loadings of DOC being on the same order of magnitude for all three catchments. Biological oxygen demand (BOD) was used as a proxy for the lability of carbon in the system. The range of BOD values was similar for all three catchments, however, the ratio of BOD to DOC (an indication of the labile fraction) in Ume river was four times higher than in the southern two catchments. Total annual BOD loading to the Baltic Sea was twice as high in the northern catchment than in the two southern catchments. Lower winter temperatures and preservation of organic matter in the northern catchment combined with an intense spring flood help to explain the higher concentrations of labile carbon in the northern catchment. Lower lability of DOM as well as higher colour in the southern catchments suggest that wetlands (i.e. peat bogs) may be the dominant source of DOM in these catchments, particularly in periods of low flow. With climate change expected to increase precipitation events and temperatures across the region, the supply and quality of DOM delivered to the Baltic Sea can also be expected to change. Our results indicate that DOM supply to the Baltic Sea from boreal rivers will be more stable throughout the year, and potentially have a lower bioavailability.
  •  
8.
  • Schittich, Anna Ricarda, et al. (författare)
  • Investigating Fluorescent Organic-Matter Composition as a Key Predictor for Arsenic Mobility in Groundwater Aquifers
  • 2018
  • Ingår i: Environmental Science & Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 52:22, s. 13027-13036
  • Tidskriftsartikel (refereegranskat)abstract
    • Dissolved organic matter (DOM) is linked to the heterogeneous distribution of elevated arsenic (As) in groundwater used for drinking and irrigation purposes, but the relationship between DOM characteristics and arsenic mobility has yet to be fully understood. Here, DOM from groundwater sampled in the Bengal Basin region was characterized using both conventional bulk emission-excitation (EEM) spectroscopy and high-performance size-exclusion chromatography coupled to spectroscopy (HPSEC-EEM). Notably, application of the novel HPSEC-EEM approach permitted the total fluorescence of individual samples to be independently resolved into its underlying components. This allowed the external validation of the bulk-sample fluorescence decomposition and offered insight into the molecular size distribution of fluorescent DOM. Molecular size distributions were similar for the UVA fluorescent (C310 and C340) as well as the three visible fluorescent (C390, C440, and C500) components. There was a greater visible fluorescence in shallow aquifer samples (10-33 m) with high As (SH, up to 418 μg/L) than in samples from the same depth with lower As (up to 40 μg/L). This indicated a link between DOM quality and As mobility within the shallow aquifer. The deep aquifer samples (170-200 m) revealed DOM characteristics similar to SH samples but had low As concentrations (<4 μg/L), signifying that the deep aquifer is potentially vulnerable to As contamination. These findings pave the way for a more comprehensive assessment of the susceptibility of drinking water aquifers, thereby supporting the management of groundwater resources.
  •  
9.
  • Sjöstedt, Johanna, 1982-, et al. (författare)
  • Substrate diversity affects carbon utilization rate and threshold concentration for uptake by natural bacterioplankton communities
  • 2022
  • Ingår i: Aquatic Microbial Ecology. - : Inter-Research Science Center. - 0948-3055 .- 1616-1564. ; 88
  • Tidskriftsartikel (refereegranskat)abstract
    • Persistence of dissolved organic matter (DOM) in aquatic environments may in part be explained by high diversity and low concentrations of carbon substrates. However, changes in dissolved substrate quality can modify aquatic bacterial community composition and rate of carbon uptake. The aim of this study was to test if the presence of multiple simple substrates affects the turnover of organic carbon. Natural bacterial communities were grown in continuous cultures supplied with either individual carbon substrates—salicylic acid (SA), tryptophan (Trp) or tyrosine (Tyr)—or a combination of the 3 substrates. Concentrations were tracked using fluorescence spectroscopy, and steady-state concentrations of a few nanomolar were reached. Bacterial growth efficiency was dependent on which carbon sources were present and reached an intermediate level in the combined treatment. The bacterial community maintained steady-state concentrations of Trp that were lower in the combined treatment than in the individual substrate treatment. In addition, steady-state concentrations were reached faster during growth on combined carbon substrates, although the maximum utilization rate of each individual compound was lower. However, the steady-state concentration of total carbon (sum of carbon content of SA, Trp and Tyr) was higher in the combined culture than in the individual substrate treatments, and seemed to be determined by the carbon substate for which the bacteria had the lowest affinity. The results from this study indicate that persistence of dissolved organic carbon can in part be explained by vast substrate diversity, which raises the threshold concentration for utilization by natural bacterial communities.
  •  
10.
  • Wuensch, Urban, 1986, et al. (författare)
  • Quantifying the impact of solid-phase extraction on chromophoric dissolved organic matter composition
  • 2018
  • Ingår i: Marine Chemistry. - : Elsevier BV. - 0304-4203. ; 207, s. 33-41
  • Tidskriftsartikel (refereegranskat)abstract
    • Advancing our understanding of the behaviour of dissolved organic matter (DOM) in aquatic environments necessitates efforts to combine complementary analytical data sets. However, some analytical measurements require sample pre-treatment, while others are carried out on bulk water samples, and it remains unclear if the resulting data sets can be compared. Here, we investigated the impact of solid-phase extraction with PPL resins on DOM optical properties. In samples from contrasting Arctic fjords, extraction efficiencies based on optical properties varied spectrally with averages between 31 ± 13% at 411 nm and 40 ± 12% at 363 nm for chromophoric DOM. Similarly, the extraction efficiency for specific fluorescence components varied between 37 ± 16% and 58 ± 18%. Solid-phase extraction also decreased S275–295, fluorescence index, and the freshness index, but increased S350–400, and apparent fluorescence quantum yields, indicating that the extraction process was qualitatively selective. Six fluorescence components identified independently in bulk water samples and extracted DOM using parallel factor analysis exhibited different behaviours. Three had identical spectral properties before and after extraction, although their extraction efficiencies varied with water mass characteristics and DOM composition, whereas three other components appeared to change after extraction. With the exception of one fluorescence component, the dynamics of optical properties in bulk water samples were not accurately reflected by DOM extracts. These results indicate that solid-phase extraction imparts a qualitative selectivity that leads to the homogenization of DOM extracts relative to their original samples. Efforts to integrate chemical information from different analytical methods should prioritize comparisons of measurements obtained on the same samples.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy