SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stempels Henricus C.) "

Sökning: WFRF:(Stempels Henricus C.)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Simpson, E. K., et al. (författare)
  • Independent Discovery of the Transiting Exoplanet HAT-P-14b
  • 2011
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 141:5, s. 161-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present SuperWASP observations of HAT-P-14b, a hot Jupiter discovered by Torres et al. The planet was found independently by the SuperWASP team and named WASP-27b after follow-up observations had secured the discovery, but prior to the publication by Torres et al. Our analysis of HAT-P-14/WASP-27 is in good agreement with the values found by Torres et al. and we provide additional evidence against astronomical false positives. Due to the brightness of the host star, V-mag = 10, HAT-P-14b is an attractive candidate for further characterization observations. The planet has a high impact parameter and the primary transit is close to grazing. This could readily reveal small deviations in the orbital parameters indicating the presence of a third body in the system, which may be causing the small but significant orbital eccentricity. Our results suggest that the planet may undergo a grazing secondary eclipse. However, even a non-detection would tightly constrain the system parameters.
  •  
2.
  • Fossati, L., et al. (författare)
  • Metals in the exosphere of the highly irradiated planet WASP-12b
  • 2010
  • Ingår i: Astrophysical Journal Letters. - 2041-8205. ; 714:2, s. L222-L227
  • Tidskriftsartikel (refereegranskat)abstract
    • We present near-UV transmission spectroscopy of the highly irradiated transiting exoplanet WASP-12b, obtained with the Cosmic Origins Spectrograph on the Hubble Space Telescope. The spectra cover three distinct wavelength ranges: NUVA (2539-2580 angstrom), NUVB (2655-2696 angstrom), and NUVC (2770-2811 angstrom). Three independent methods all reveal enhanced transit depths attributable to absorption by resonance lines of metals in the exosphere of WASP-12b. Light curves of total counts in the NUVA and NUVC wavelength ranges show a detection at a 2.5 sigma level. We detect extra absorption in the Mg II lambda lambda 2800 resonance line cores at the 2.8 sigma level. The NUVA, NUVB, and NUVC light curves imply effective radii of 2.69 +/- 0.24 R-J, 2.18 +/- 0.18 R-J, and 2.66 +/- 0.22 R-J respectively, suggesting the planet is surrounded by an absorbing cloud which overfills the Roche lobe. We detect enhanced transit depths at the wavelengths of resonance lines of neutral sodium, tin, and manganese, and at singly ionized ytterbium, scandium, manganese, aluminum, vanadium, and magnesium. We also find the statistically expected number of anomalous transit depths at wavelengths not associated with any known resonance line. Our data are limited by photon noise, but taken as a whole the results are strong evidence for an extended absorbing exosphere surrounding the planet. The NUVA data exhibit an early ingress, contrary to model expectations; we speculate this could be due to the presence of a disk of previously stripped material.
  •  
3.
  • Galan, C., et al. (författare)
  • International observational campaigns of the last two eclipses in EE Cephei : 2003 and 2008/9
  • 2012
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 544, s. A53-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. EECep is an unusual long-period (5.6 yr) eclipsing binary discovered during the mid-twentieth century. It undergoes almost-grey eclipses that vary in terms of both depth and duration at different epochs. The system consists of a Be type star and a dark dusty disk around an invisible companion. EECep together with the widely studied epsilon Aur are the only two known cases of long-period eclipsing binaries with a dark, dusty disk component responsible for periodic obscurations.Aims. Two observational campaigns were carried out during the eclipses of EECep in 2003 and 2008/9 to verify whether the eclipsing body in the system is indeed a dark disk and to understand the observed changes in the depths and durations of the eclipses.Methods. Multicolour photometric data and spectroscopic observations performed at both low and high resolutions were collected with several dozen instruments located in Europe and North America. We numerically modelled the variations in brightness and colour during the eclipses. We tested models with different disk structure, taking into consideration the inhomogeneous surface brightness of the Be star. We considered the possibility of disk precession.Results. The complete set of observational data collected during the last three eclipses are made available to the astronomical community. The 2003 and 2008/9 eclipses of EECep were very shallow. The latter is the shallowest among all observed. The very high quality photometric data illustrate in detail the colour evolution during the eclipses for the first time. Two blue maxima in the colour indices were detected during these two eclipses, one before and one after the photometric minimum. The first (stronger) blue maximum is simultaneous with a "bump" that is very clear in all the UBV(RI)(C) light curves. A temporary increase in the I-band brightness at the orbital phase similar to 0.2 was observed after each of the last three eclipses. Variations in the spectral line profiles seem to be recurrent during each cycle. The Na I lines always show at least three absorption components during the eclipse minimum and strong absorption is superimposed on the H alpha emission.Conclusions. These observations confirm that the eclipsing object in EECep system is indeed a dark, dusty disk around a low luminosity object. The primary appears to be a rapidly rotating Be star that is strongly darkened at the equator and brightened at the poles. Some of the conclusions of this work require verification in future studies: (i) a complex, possibly multi-ring structure of the disk in EECep; (ii) our explanation of the "bump" observed during the last two eclipses in terms of the different times of obscuration of the hot polar regions of the Be star by the disk; and (iii) our suggested period of the disk precession (similar to 11-12 P-orb) and predicted depth of about 2(m) for the forthcoming eclipse in 2014.
  •  
4.
  • Simpson, E. K., et al. (författare)
  • The spin-orbit angles of the transiting exoplanets WASP-1b, WASP-24b, WASP-38b and HAT-P-8b from Rossiter-McLaughlin observations
  • 2011
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 414:4, s. 3023-3035
  • Tidskriftsartikel (refereegranskat)abstract
    • We present observations of the Rossiter-McLaughlin effect for the transiting exoplanets WASP-1b, WASP-24b, WASP-38b and HAT-P-8b, and deduce the orientations of the planetary orbits with respect to the host stars' rotation axes. The planets WASP-24b, WASP-38b and HAT-P-8b appear to move in prograde orbits and be well aligned, having sky-projected spin-orbit angles consistent with zero: lambda = -4 degrees.7 +/- 4 degrees.0, 15 degrees(+43)(-33) and -9 degrees.7(-7.7)(+9.0), respectively. The host stars have T(eff) < 6250K and conform with the trend of cooler stars having low obliquities. WASP-38b is a massive planet on a moderately long period, eccentric orbit so may be expected to have a misaligned orbit given the high obliquities measured in similar systems. However, we find no evidence for a large spin-orbit angle. By contrast, WASP-1b joins the growing number of misaligned systems and has an almost polar orbit, lambda = -79 degrees.0(-4.3)(+4.5). It is neither very massive, eccentric nor orbiting a hot host star, and therefore does not share the properties of many other misaligned systems.
  •  
5.
  • Kochukhov, Oleg, et al. (författare)
  • No magnetic field in the spotted HgMn star mu Leporis
  • 2011
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 534, s. L13-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Chemically peculiar stars of the mercury-manganese (HgMn) type represent a new class of spotted late-B stars, in which evolving surface chemical inhomogeneities are apparently unrelated to the presence of strong magnetic fields but are produced by some hitherto unknown astrophysical mechanism.Aims. The goal of this study is to perform a detailed line profile variability analysis and carry out a sensitive magnetic field search for one of the brightest HgMn stars -mu Lep.Methods. We acquired a set of very high-quality intensity and polarization spectra of mu Lep with the HARPSpol polarimeter. These data were analyzed with the multiline technique of least-squares deconvolution in order to extract information on the magnetic field and line profile variability.Results. Our spectra show very weak but definite variability in the lines of Sc, all Fe-peak elements represented in the spectrum of mu Lep, as well as Y, Sr, and Hg. Variability might also be present in the lines of Si and Mg. Anomalous profile shapes of Ti II and YII lines suggest a dominant axisymmetric distribution of these elements. At the same time, we found no evidence of the magnetic field in mu Lep, with the 3 sigma upper limit of only 3 G for the mean longitudinal magnetic field. This is the most stringent upper limit on the possible magnetic field derived for a spotted HgMn star.Conclusions. The very weak variability detected for many elements in the spectrum mu Lep suggests that low-contrast chemical inhomogeneities may be common in HgMn stars and that they have not been recognized until now due to the limited precision of previous spectroscopic observations and a lack of time-series data. The null result of the magnetic field search reinforces the conclusion that formation of chemical spots in HgMn stars is not magnetically driven.
  •  
6.
  • de Val-Borro, M., et al. (författare)
  • Modelling circumbinary gas flows in close T Tauri binaries star
  • 2011
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 413:4, s. 2679-2688
  • Tidskriftsartikel (refereegranskat)abstract
    • Young close binaries open central gaps in the surrounding circumbinary accretion disc, but the stellar components may still gain mass from gas crossing through the gap. It is not well understood how this process operates and how the stellar components are affected by such inflows. Our main goal is to investigate how gas accretion takes place and evolves in close T Tauri binary systems. In particular, we model the accretion flows around two close T Tauri binaries, V4046 Sgr and DQ Tau, both showing periodic changes in emission lines, although their orbital characteristics are very different. In order to derive the density and velocity maps of the circumbinary material, we employ two-dimensional hydrodynamic simulations with a locally isothermal equation of state. The flow patterns become quasi-stable after a few orbits in the frame corotating with the system. Gas flows across the circumbinary gap through the corotating Lagrangian points, and local circumstellar discs develop around both components. Spiral density patterns develop in the circumbinary disc that transport angular momentum efficiently. Mass is preferentially channelled towards the primary and its circumstellar disc is more massive than the disc around the secondary. We also compare the derived density distribution to observed line profile variability. The line profile variability tracing the gas flows in the central cavity shows clear similarities with the corresponding observed line profile variability in V4046 Sgr, but only when the local circumstellar disc emission was excluded. Closer to the stars normal magnetospheric accretion may dominate, while further out the dynamic accretion process outlined here dominates. Periodic changes in the accretion rates on to the stars can explain the outbursts of line emission observed in eccentric systems such as DQ Tau.
  •  
7.
  • Houdebine, E. R., et al. (författare)
  • Observation and modelling of main sequence star chromospheres - XIII. The Na i D1 and D2, and He i D3 lines in dM1 stars
  • 2009
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 400:1, s. 238-247
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate spectral lines of interest in dM1 stars, namely the Na i D1 and D2 and He i 5876 lines. We study in detail the line shapes of the Na i D1 and D2 lines. We find that these lines are strong and broad in normal dM1 stars and become weaker and narrower when metallicity is low, although our sample is insufficient in order to find out an empirical correlation between these parameters. We find correlations between the Ca ii resonance line-mean equivalent width (EW) and v sin i as well as between the Na i mean line core relative flux and v sin i. These correlations include low activity dM1 stars and show that the Na i mean line core flux is a good chromospheric diagnostic. We find a good correlation between the Na i D1 line core flux and the Na i D2 line core flux. This correlation shows that the line core optical depths decrease with an increasing activity level, that is the opposite of what was found for the Ca ii lines. The Na i D1 and D2 mean line core flux also correlates well with the Ca ii mean EW and with the H alpha EW. We also compare these correlations to the available model computations. We investigate in detail the shapes of the Na i D1 and D2 lines through the full line widths at 85 per cent, 62 per cent and 35 per cent of the continuum. The significant differences from one star to another cannot be explained at this stage. Detailed modelling of the stellar photospheres will be necessary to interpret the observed differences. The He i 5876 line is detected in only one dM1 star in our sample. We obtain activity correlations between the He i 5876 line EW and the Ca ii mean EW, and the H alpha EW.
  •  
8.
  • Makaganiuk, Vitalii, et al. (författare)
  • Magnetism, chemical spots, and stratification in the HgMn star ϕ Phoenicis
  • 2012
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 539, s. A142-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Mercury-manganese (HgMn) stars have been considered as non-magnetic and non-variable chemically peculiar (CP) starsfor a long time. However, recent discoveries of the variability in spectral line profiles have suggested an inhomogeneous surfacedistribution of chemical elements in some HgMn stars. From the studies of other CP stars it is known that magnetic field plays a keyrole in the formation of surface spots. All attempts to find magnetic fields in HgMn stars have yielded negative results.Aims. In this study, we investigate the possible presence of a magnetic field in ϕ Phe (HD 11753) and reconstruct surface distributionof chemical elements that show variability in spectral lines.We also test a hypothesis that a magnetic field is concentrated in chemicalspots and look into the possibility that some chemical elements are stratified with depth in the stellar atmosphere.Methods. Our analysis is based on high-quality spectropolarimetric time-series observations, covering a full rotational period ofthe star. Spectra were obtained with the HARPSpol at the ESO 3.6-m telescope. To increase the sensitivity of the magnetic fieldsearch, we employed the least-squares deconvolution (LSD) technique. Using Doppler imaging code INVERS10, we reconstructedsurface chemical distributions by utilising information from multiple spectral lines. The vertical stratification of chemical elementswas calculated with the DDAFit program.Results. Combining information from all suitable spectral lines, we set an upper limit of 4 G on the mean longitudinal magnetic field.For chemical spots, an upper limit on the longitudinal field varies between 8 and 15 G. We confirmed the variability of Y, Sr, and Tiand detected variability in Cr lines. Stratification analysis showed that Y and Ti are not concentrated in the uppermost atmosphericlayers.Conclusions. Our spectropolarimetric observations rule out the presence of a strong, globally-organised magnetic field in ϕ Phe.This implies an alternative mechanism of spot formation, which could be related to a non-equilibrium atomic diffusion. However, thetypical time scales of the variation in stratification predicted by the recent time-dependent diffusion models exceed significantly thespot evolution time-scale reported for ϕ Phe.
  •  
9.
  • Makaganiuk, Vitalii, et al. (författare)
  • The search for magnetic fields in mercury-manganese stars
  • 2011
  • Ingår i: Active OB stars. - 9780521198400 ; , s. 202-203
  • Konferensbidrag (refereegranskat)abstract
    • Mercury-manganese (HgMn) stars were considered to be non-magnetic, showing no evidence of surface spots. However, recent investigations revealed that some stars in this class possess an inhomogeneous distribution of chemical elements on their surfaces. According to our current understanding, the most probable mechanism of spot formation involves magnetic fields. Taking the advantage of a newly-built polarimeter attached to the HARPS spectrometer at the ESO 3.6m-telescope, we performed a high-precision spectropolarimetric survey of a large group of HgMn stars. The main purpose of this study was to find out how typical it is for HgMn stars to have weak magnetic fields. We report no magnetic field detection for any of the studied objects, with a typical precision of the longitudinal field measurements of 10 G and down to 1 Gauss for some of the stars. We conclude that HgMn stars lack large-scale magnetic fields typical of spotted magnetic Ap stars and probably lack any fields capable of creating and sustaining chemical spots. Our study confirms that alongside the magnetically altered atomic diffusion, there must be other structure formation mechanism operating in the atmospheres of late-B main sequence stars.
  •  
10.
  • Maqueo Chew, Y. Gomez, et al. (författare)
  • Fundamental properties of the pre-main sequence eclipsing stars of MML 53 and the mass of the tertiary
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 623
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the most comprehensive analysis to date of the Upper Centaurus Lupus eclipsing binary MML 53 (with P-EB = 2.097892 d), and for the first time, confirm the bound-nature of the third star (in a P-3 similar to 9 yr orbit) by constraining its mass dynamically. Our analysis is based on new and archival spectra and time-series photometry, spanning 80% of one orbit of the outer component. From the spectroscopic analysis, we determined the temperature of the primary star to be 4880 +/- 100 K. The study of the close binary incorporated treatment of spots and dilution by the tertiary in the light curves, allowing for the robust measurement of the masses of the eclipsing components within 1% (M-1 = 1.0400 +/- 0.0067 M-circle dot and M-2 = 0.8907 +/- 0.0058 M-circle dot), their radii within 4.5% (R-1 = 1.283 +/- 0.043 R-circle dot and R-2 = 1.107 +/- 0.049 R-circle dot), and the temperature of the secondary star (T-eff,T-2 = 4379 +/- 100 K). From the analysis of the eclipse timings, and the change in systemic velocity of the eclipsing binary and the radial velocities of the third star, we measured the mass of the outer companion to be 0.7 M-circle dot (with a 20% uncertainty). The age we derived from the evolution of the temperature ratio between the eclipsing components is fully consistent with previous, independent estimates of the age of Upper Centaurus Lupus (16 +/- 2 Myr). At this age, the tightening of the MML 53 eclipsing binary has already occurred, thus supporting close-binary formation mechanisms that act early in the stars' evolution. The eclipsing components of MML 53 roughly follow the same theoretical isochrone, but appear to be inflated in radius (by 20% for the primary and 10% for the secondary) with respect to recent evolutionary models. However, our radius measurement of the 1.04 M-circle dot primary star of MML 53 is in full agreement with the independent measurement of the secondary of NP Per which has the same mass and a similar age. The eclipsing stars of MML 53 are found to be larger but not cooler than predicted by non-magnetic models, it is not clear what is the mechanism that is causing the radius inflation given that activity, spots and/or magnetic fields slowing their contraction, require the inflated stars to be cooler to remain in thermal equilibrium.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy