SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stockling Kenneth) "

Sökning: WFRF:(Stockling Kenneth)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Borgegard, Tomas, et al. (författare)
  • Alzheimers Disease: Presenilin 2-Sparing gamma-Secretase Inhibition Is a Tolerable A beta Peptide-Lowering Strategy
  • 2012
  • Ingår i: Journal of Neuroscience. - : Society for Neuroscience. - 0270-6474 .- 1529-2401. ; 32:48, s. 17297-17305
  • Tidskriftsartikel (refereegranskat)abstract
    • gamma-Secretase inhibition represents a major therapeutic strategy for lowering amyloid beta (A beta) peptide production in Alzheimers disease (AD). Progress toward clinical use of gamma-secretase inhibitors has, however, been hampered due to mechanism-based adverse events, primarily related to impairment of Notch signaling. The gamma-secretase inhibitor MRK-560 represents an exception as it is largely tolerable in vivo despite displaying only a small selectivity between A beta production and Notch signaling in vitro. In exploring the molecular basis for the observed tolerability, we show that MRK-560 displays a strong preference for the presenilin 1(PS1) over PS2 subclass of gamma-secretases and is tolerable in wild-type mice but causes dose-dependent Notch-related side effect in PS2-deficient mice at drug exposure levels resulting in a substantial decrease in brain A beta levels. This demonstrates that PS2 plays an important role in mediating essential Notch signaling in several peripheral organs during pharmacological inhibition of PS1 and provide preclinical in vivo proof of concept for PS2-sparing inhibition as a novel, tolerable and efficacious gamma-secretase targeting strategy for AD.
  •  
2.
  • Borgegård, Tomas, et al. (författare)
  • Alzheimer's Disease : Presenilin 2-Sparing γ-Secretase Inhibition Is a Tolerable Aβ Peptide-Lowering Strategy
  • 2012
  • Ingår i: Journal of Neuroscience. - 0270-6474 .- 1529-2401. ; 32:48, s. 17297-17305
  • Tidskriftsartikel (refereegranskat)abstract
    • γ-Secretase inhibition represents a major therapeutic strategy for lowering amyloid β (Aβ) peptide production in Alzheimer's disease (AD). Progress toward clinical use of γ-secretase inhibitors has, however, been hampered due to mechanism-based adverse events, primarily related to impairment of Notch signaling. The γ-secretase inhibitor MRK-560 represents an exception as it is largely tolerable in vivo despite displaying only a small selectivity between Aβ production and Notch signaling in vitro. In exploring the molecular basis for the observed tolerability, we show that MRK-560 displays a strong preference for the presenilin 1 (PS1) over PS2 subclass of γ-secretases and is tolerable in wild-type mice but causes dose-dependent Notch-related side effect in PS2-deficient mice at drug exposure levels resulting in a substantial decrease in brain Aβ levels. This demonstrates that PS2 plays an important role in mediating essential Notch signaling in several peripheral organs during pharmacological inhibition of PS1 and provide preclinical in vivo proof of concept for PS2-sparing inhibition as a novel, tolerable and efficacious γ-secretase targeting strategy for AD.
  •  
3.
  •  
4.
  • Danielsson, Christian, et al. (författare)
  • Exploration of human, rat, and rabbit embryonic cardiomyocytes suggests K-channel block as a common teratogenic mechanism
  • 2013
  • Ingår i: Cardiovascular Research. - : Oxford University Press (OUP): Policy B. - 0008-6363 .- 1755-3245. ; 97:1, s. 23-32
  • Tidskriftsartikel (refereegranskat)abstract
    • Several drugs blocking the rapidly activating potassium (K-r) channel cause malformations (including cardiac defects) and embryonic death in animal teratology studies. In humans, these drugs have an established risk for acquired long-QT syndrome and arrhythmia. Recently, associations between cardiac defects and spontaneous abortions have been reported for drugs widely used in pregnancy (e.g. antidepressants), with long-QT syndrome risk. To investigate whether a common embryonic adverse-effect mechanism exists in the human, rat, and rabbit embryos, we made a comparative study of embryonic cardiomyocytes from all three species. less thanbrgreater than less thanbrgreater thanPatch-clamp and quantitative-mRNA measurements of K-r and slowly activating K (K-s) channels were performed on human, rat, and rabbit primary cardiomyocytes and cardiac samples from different embryo-foetal stages. The K-r channel was present when the heart started to beat in all species, but was, in contrast to human and rabbit, lost in rats in late organogenesis. The specific K-r-channel blocker E-4031 prolonged the action potential in a species- and development-dependent fashion, consistent with the observed K-r-channel expression pattern and reported sensitive periods of developmental toxicity. E-4031 also increased the QT interval and induced 2:1 atrio-ventricular block in multi-electrode array electrographic recordings of rat embryos. The K-s channel was expressed in human and rat throughout the embryo-foetal period but not in rabbit. less thanbrgreater than less thanbrgreater thanThis first comparison of mRNA expression, potassium currents, and action-potential characteristics, with and without a specific K-r-channel blocker in human, rat, and rabbit embryos provides evidence of K-r-channel inhibition as a common mechanism for embryonic malformations and death.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy