SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Strassert J. F. H.) "

Sökning: WFRF:(Strassert J. F. H.)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hyde, K. D., et al. (författare)
  • Global consortium for the classification of fungi and fungus-like taxa
  • 2023
  • Ingår i: MYCOSPHERE. - : Mushroom Research Foundation. - 2077-7000 .- 2077-7019. ; 14:1, s. 1960-2012
  • Tidskriftsartikel (refereegranskat)abstract
    • The Global Consortium for the Classification of Fungi and fungus-like taxa is an international initiative of more than 550 mycologists to develop an electronic structure for the classification of these organisms. The members of the Consortium originate from 55 countries/regions worldwide, from a wide range of disciplines, and include senior, mid-career and early-career mycologists and plant pathologists. The Consortium will publish a biannual update of the Outline of Fungi and fungus-like taxa, to act as an international scheme for other scientists. Notes on all newly published taxa at or above the level of species will be prepared and published online on the Outline of Fungi website (https://www.outlineoffungi.org/), and these will be finally published in the biannual edition of the Outline of Fungi and fungus-like taxa. Comments on recent important taxonomic opinions on controversial topics will be included in the biannual outline. For example, 'to promote a more stable taxonomy in Fusarium given the divergences over its generic delimitation', or 'are there too many genera in the Boletales?' and even more importantly, 'what should be done with the tremendously diverse 'dark fungal taxa?' There are undeniable differences in mycologists' perceptions and opinions regarding species classification as well as the establishment of new species. Given the pluralistic nature of fungal taxonomy and its implications for species concepts and the nature of species, this consortium aims to provide a platform to better refine and stabilise fungal classification, taking into consideration views from different parties. In the future, a confidential voting system will be set up to gauge the opinions of all mycologists in the Consortium on important topics. The results of such surveys will be presented to the International Commission on the Taxonomy of Fungi (ICTF) and the Nomenclature Committee for Fungi (NCF) with opinions and percentages of votes for and against. Criticisms based on scientific evidence with regards to nomenclature, classifications, and taxonomic concepts will be welcomed, and any recommendations on specific taxonomic issues will also be encouraged; however, we will encourage professionally and ethically responsible criticisms of others' work. This biannual ongoing project will provide an outlet for advances in various topics of fungal classification, nomenclature, and taxonomic concepts and lead to a community-agreed classification scheme for the fungi and fungus-like taxa. Interested parties should contact the lead author if they would like to be involved in future outlines.
  •  
2.
  • Schön, Max Emil, et al. (författare)
  • Single cell genomics reveals plastid-lacking Picozoa are close relatives of red algae
  • 2021
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The endosymbiotic origin of plastids from cyanobacteria gave eukaryotes photosynthetic capabilities and launched the diversification of countless forms of algae. These primary plastids are found in members of the eukaryotic supergroup Archaeplastida. All known archaeplastids still retain some form of primary plastids, which are widely assumed to have a single origin. Here, we used single-cell genomics from natural samples combined with phylogenomics to infer the evolutionary origin of the phylum Picozoa, a globally distributed but seemingly rare group of marine microbial heterotrophic eukaryotes. Strikingly, the analysis of 43 single-cell genomes shows that Picozoa belong to Archaeplastida, specifically related to red algae and the phagotrophic rhodelphids. These picozoan genomes support the hypothesis that Picozoa lack a plastid, and further reveal no evidence of an early cryptic endosymbiosis with cyanobacteria. These findings change our understanding of plastid evolution as they either represent the first complete plastid loss in a free-living taxon, or indicate that red algae and rhodelphids obtained their plastids independently of other archaeplastids.
  •  
3.
  • Strassert, Jürgen F H, et al. (författare)
  • Single cell genomics of uncultured marine alveolates shows paraphyly of basal dinoflagellates
  • 2018
  • Ingår i: The ISME Journal. - : Macmillan Publishers Ltd.. - 1751-7362 .- 1751-7370. ; 12, s. 304-308
  • Tidskriftsartikel (refereegranskat)abstract
    • Marine alveolates (MALVs) are diverse and widespread early-branching dinoflagellates, but most knowledge of the group comes from a few cultured species that are generally not abundant in natural samples, or from diversity analyses of PCR-based environmental SSU rRNA gene sequences. To more broadly examine MALV genomes, we generated single cell genome sequences from seven individually isolated cells. Genes expected of heterotrophic eukaryotes were found, with interesting exceptions like presence of proteorhodopsin and vacuolar H+-pyrophosphatase. Phylogenetic analysis of concatenated SSU and LSU rRNA gene sequences provided strong support for the paraphyly of MALV lineages. Dinoflagellate viral nucleoproteins were found only in MALV groups that branched as sister to dinokaryotes. Our findings indicate that multiple independent origins of several characteristics early in dinoflagellate evolution, such as a parasitic life style, underlie the environmental diversity of MALVs, and suggest they have more varied trophic modes than previously thought.
  •  
4.
  • Strassert, Jürgen F. H., et al. (författare)
  • Phylogeny, Evidence for a Cryptic Plastid, and Distribution of Chytriodinium Parasites (Dinophyceae) Infecting Copepods
  • 2019
  • Ingår i: Journal of Eukaryotic Microbiology. - : Wiley. - 1066-5234 .- 1550-7408. ; 66:4, s. 574-581
  • Tidskriftsartikel (refereegranskat)abstract
    • Spores of the dinoflagellate Chytriodinium are known to infest copepod eggs causing their lethality. Despite the potential to control the population of such an ecologically important host, knowledge about Chytriodinium parasites is limited: we know little about phylogeny, parasitism, abundance, or geographical distribution. We carried out genome sequence surveys on four manually isolated sporocytes from the same sporangium, which seemed to be attached to a copepod nauplius, to analyze the phylogenetic position of Chytriodinium based on SSU and concatenated SSU/LSU rRNA gene sequences, and also characterize two genes related to the plastidial heme pathway, hemL and hemY. The results suggest the presence of a cryptic plastid in Chytriodinium and a photosynthetic ancestral state of the parasitic Chytriodinium/Dissodinium clade. Finally, by mapping Tara Oceans V9 SSU amplicon data to the recovered SSU rRNA gene sequences from the sporocytes, we show that globally, Chytriodinium parasites are most abundant within the pico/nano- and mesoplankton of the surface ocean and almost absent within microplankton, a distribution indicating that they generally exist either as free-living spores or host-associated sporangia.
  •  
5.
  • Tice, Alexander K., et al. (författare)
  • PhyloFisher : A phylogenomic package for resolving eukaryotic relationships
  • 2021
  • Ingår i: PLoS biology. - : Public Library of Science (PLoS). - 1544-9173 .- 1545-7885. ; 19:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Phylogenomic analyses of hundreds of protein-coding genes aimed at resolving phylogenetic relationships is now a common practice. However, no software currently exists that includes tools for dataset construction and subsequent analysis with diverse validation strategies to assess robustness. Furthermore, there are no publicly available high-quality curated databases designed to assess deep (>100 million years) relationships in the tree of eukaryotes. To address these issues, we developed an easy-to-use software package, PhyloFisher (https://github.com/TheBrownLab/PhyloFisher), written in Python 3. PhyloFisher includes a manually curated database of 240 protein-coding genes from 304 eukaryotic taxa covering known eukaryotic diversity, a novel tool for ortholog selection, and utilities that will perform diverse analyses required by state-of-the-art phylogenomic investigations. Through phylogenetic reconstructions of the tree of eukaryotes and of the Saccharomycetaceae clade of budding yeasts, we demonstrate the utility of the PhyloFisher workflow and the provided starting database to address phylogenetic questions across a large range of evolutionary time points for diverse groups of organisms. We also demonstrate that undetected paralogy can remain in phylogenomic "single-copy orthogroup" datasets constructed using widely accepted methods such as all vs. all BLAST searches followed by Markov Cluster Algorithm (MCL) clustering and application of automated tree pruning algorithms. Finally, we show how the PhyloFisher workflow helps detect inadvertent paralog inclusions, allowing the user to make more informed decisions regarding orthology assignments, leading to a more accurate final dataset.
  •  
6.
  •  
7.
  • Waege, J., et al. (författare)
  • Microcapillary sampling of Baltic Sea copepod gut microbiomes indicates high variability among individuals and the potential for methane production
  • 2019
  • Ingår i: FEMS Microbiology Ecology. - : OXFORD UNIV PRESS. - 0168-6496 .- 1574-6941. ; 95:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The paradox of methane oversaturation in oxygenated surface water has been described in many pelagic systems and still raises the question of the source. Temora sp. and Acartia sp. commonly dominate the surface and subsurface waters of the central Baltic Sea. It is hypothesised that their gut microbiome at least partly contributes to the methane anomaly in this ecosystem. However, the potential pathway for this methane production remains unclear. Using a microcapillary technique, we successfully overcame the challenge of sampling the gut microbiome of copepods <1 mm. 16S rRNA gene amplicon sequencing revealed differences among the dominant bacterial communities associated with Temora sp. (Actinobacteria, Betaproteobacteria and Flavobacteriia) and Acartia sp. (Actinobacteria, Alphaproteobacteria and Betaproteobacteria) and the surrounding water (Proteobacteria, Cyanobacteria and Verrucomicrobia), but also intraspecific variability. In both copepods, gut-specific prokaryotic taxa and indicative species for methane production pathways (methanogenesis, dimethylsulfoniopropionate or methylphosphonate) were present. The relative abundance of archaea and methanogens was investigated using droplet digital polymerase chain reaction and showed a high variability among copepod individuals, underlining intra- and interspecific differences in copepod-associated prokaryotic communities. Overall, this work highlights that the guts of Temora sp. and Acartia sp. have the potential for methane production but are probably no hotspot.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy