SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Swenson Nathan) "

Sökning: WFRF:(Swenson Nathan)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kattge, Jens, et al. (författare)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • Ingår i: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
2.
  • Chazdon, Robin L., et al. (författare)
  • Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics
  • 2016
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 2:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Regrowth of tropical secondary forests following complete or nearly complete removal of forest vegetation actively stores carbon in aboveground biomass, partially counterbalancing carbon emissions from deforestation, forest degradation, burning of fossil fuels, and other anthropogenic sources. We estimate the age and spatial extent of lowland second-growth forests in the Latin American tropics and model their potential aboveground carbon accumulation over four decades. Our model shows that, in 2008, second-growth forests (1 to 60 years old) covered 2.4 million km2 of land (28.1% of the total study area). Over 40 years, these lands can potentially accumulate a total aboveground carbon stock of 8.48 Pg C (petagrams of carbon) in aboveground biomass via low-cost natural regeneration or assisted regeneration, corresponding to a total CO2 sequestration of 31.09 Pg CO2. This total is equivalent to carbon emissions from fossil fuel use and industrial processes in all of Latin America and the Caribbean from 1993 to 2014. Ten countries account for 95% of this carbon storage potential, led by Brazil, Colombia, Mexico, and Venezuela. We model future land-use scenarios to guide national carbon mitigation policies. Permitting natural regeneration on 40% of lowland pastures potentially stores an additional 2.0 Pg C over 40 years. Our study provides information and maps to guide national-level forest-based carbon mitigation plans on the basis of estimated rates of natural regeneration and pasture abandonment. Coupled with avoided deforestation and sustainable forest management, natural regeneration of second-growth forests provides a low-cost mechanism that yields a high carbon sequestration potential with multiple benefits for biodiversity and ecosystem services.
  •  
3.
  • Dawson, Michael, et al. (författare)
  • A horizon scan of Biogeography
  • 2013
  • Ingår i: Frontiers of biogeography. - 1948-6596. ; 5:2, s. 130-157
  • Tidskriftsartikel (refereegranskat)abstract
    • The opportunity to reflect broadly on the accomplishments, prospects, and reach of a field may present itself relatively infrequently. Each biennial meeting of the International Biogeography Society showcases ideas solicited and developed largely during the preceding year, by individuals or teams from across the breadth of the discipline. Here, we highlight challenges, developments, and opportunities in biogeography from that biennial synthesis. We note the realized and potential impact of rapid data accumulation in several fields, a renaissance for inter disciplinary research, the importance of recognizing the evolution–ecology continuum across spatial and temporal scales and at different taxonomic, phylogenetic and functional levels, and reexploration of classical assumptions and hypotheses using new tools. However, advances are taxonomically and geographically biased, and key theoretical frameworks await tools to handle, or strategies to simplify, the biological complexity seen in empirical systems. Current threats to biodiversity require unprecedented integration of knowledge and development of predictive capacity that may enable biogeography to unite its descriptive and hypothetico deductive branches and establish a greater role within and outside academia.
  •  
4.
  • Dawson, Michael N., et al. (författare)
  • An horizon scan of biogeography
  • 2013
  • Ingår i: Frontiers of Biogeography. - : International Biogeography Society. - 1948-6596. ; 5:2, s. 130-157
  • Tidskriftsartikel (refereegranskat)abstract
    • The opportunity to reflect broadly on the accomplishments, prospects, and reach of a field may present itself relatively infrequently.  Each biennial meeting of the International Biogeography Society showcases ideas solicited and developed largely during the preceding year, by individuals or teams from across the breadth of the discipline.  Here, we highlight challenges, developments, and opportunities in biogeography that were summarized at or emerge from that biennial synthesis. We note the realized and potential impact of rapid data accumulation in several fields, a Renaissance for inter-disciplinary research, the importance of recognizing the evolution-ecology continuum across spatial and temporal scales and at different taxonomic, phylogenetic and functional levels, and re-exploration of classical assumptions and hypotheses using new tools. However, advances are taxonomically and geographically biased, key theoretical frameworks await development of tools for handling, or strategies for simplifying, the biological complexity seen in empirical systems. Current threats to biodiversity require unprecedented integration of knowledge and development of predictive capacity that may enable biogeography to unite its descriptive and hypothetico-deductive arms and establish a greater role within and outside academia.
  •  
5.
  • Gei, Maga, et al. (författare)
  • Legume abundance along successional and rainfall gradients in Neotropical forests
  • 2018
  • Ingår i: Nature Ecology & Evolution. - : Springer Science and Business Media LLC. - 2397-334X. ; 2:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The nutrient demands of regrowing tropical forests are partly satisfied by nitrogen-fixing legume trees, but our understanding of the abundance of those species is biased towards wet tropical regions. Here we show how the abundance of Leguminosae is affected by both recovery from disturbance and large-scale rainfall gradients through a synthesis of forest inventory plots from a network of 42 Neotropical forest chronosequences. During the first three decades of natural forest regeneration, legume basal area is twice as high in dry compared with wet secondary forests. The tremendous ecological success of legumes in recently disturbed, water-limited forests is likely to be related to both their reduced leaflet size and ability to fix N2, which together enhance legume drought tolerance and water-use efficiency. Earth system models should incorporate these large-scale successional and climatic patterns of legume dominance to provide more accurate estimates of the maximum potential for natural nitrogen fixation across tropical forests.
  •  
6.
  • Lasky, Jesse R., et al. (författare)
  • Ontogenetic shifts in trait-mediated mechanisms of plant community assembly
  • 2015
  • Ingår i: Ecology. - : Wiley. - 0012-9658 .- 1939-9170. ; 96
  • Tidskriftsartikel (refereegranskat)abstract
    • Identifying the processes that maintain highly diverse plant communities remains a central goal in ecology. Species variation in growth and survival rates across ontogeny, represented by tree size classes, and life history stage-specific niche partitioning, are potentially important mechanisms for promoting forest diversity. However, the role of ontogeny in mediating competitive dynamics and promoting functional diversity is not well understood, particular in high-diversity systems such as tropical forests. The interaction between interspecific functional trait variation and ontogenetic shifts in competitive dynamics may yield insights into the ecophysiological mechanisms promoting community diversity. We investigated how functional trait (seed size, maximum height, SLA, leaf N and wood density) associations with growth and survival and response to competing neighbors, differ among seedlings and two size classes of trees in a subtropical rainforest in Puerto Rico. We used a hierarchical Bayes model of diameter growth and survival to infer trait relationships with ontogenetic change in competitive dynamics. Traits were more strongly associated with average growth and survival than with neighborhood interactions, and were highly consistent across ontogeny for most traits. The associations between trait values and tree responses to crowding by neighbors showed significant shifts as trees grew. Large trees exhibited greater growth as the difference in species trait values among neighbors increased, suggesting trait-associated niche partitioning was important for the largest size class. Our results identify potential axes of niche partitioning and performance-equalizing functional tradeoffs across ontogeny, promoting species coexistence in this diverse forest community.
  •  
7.
  • Letcher, Susan G., et al. (författare)
  • Environmental gradients and the evolution of successional habitat specialization : a test case with 14 Neotropical forest sites
  • 2015
  • Ingår i: Journal of Ecology. - : Wiley. - 0022-0477 .- 1365-2745. ; 103:5
  • Tidskriftsartikel (refereegranskat)abstract
    • * Successional gradients are ubiquitous in nature, yet few studies have systematically examined the evolutionary origins of taxa that specialize at different successional stages. Here we quantify successional habitat specialization in Neotropical forest trees and evaluate its evolutionary lability along a precipitation gradient. Theoretically, successional habitat specialization should be more evolutionarily conserved in wet forests than in dry forests due to more extreme microenvironmental differentiation between early and late-successional stages in wet forest. * We applied a robust multinomial classification model to samples of primary and secondary forest trees from 14 Neotropical lowland forest sites spanning a precipitation gradient from 788 to 4000 mm annual rainfall, identifying species that are old-growth specialists and secondary forest specialists in each site. We constructed phylogenies for the classified taxa at each site and for the entire set of classified taxa and tested whether successional habitat specialization is phylogenetically conserved. We further investigated differences in the functional traits of species specializing in secondary vs. old-growth forest along the precipitation gradient, expecting different trait associations with secondary forest specialists in wet vs. dry forests since water availability is more limiting in dry forests and light availability more limiting in wet forests. * Successional habitat specialization is non-randomly distributed in the angiosperm phylogeny, with a tendency towards phylogenetic conservatism overall and a trend towards stronger conservatism in wet forests than in dry forests. However, the specialists come from all the major branches of the angiosperm phylogeny, and very few functional traits showed any consistent relationships with successional habitat specialization in either wet or dry forests. * Synthesis. The niche conservatism evident in the habitat specialization of Neotropical trees suggests a role for radiation into different successional habitats in the evolution of species-rich genera, though the diversity of functional traits that lead to success in different successional habitats complicates analyses at the community scale. Examining the distribution of particular lineages with respect to successional gradients may provide more insight into the role of successional habitat specialization in the evolution of species-rich taxa.
  •  
8.
  • Muscarella, Robert, et al. (författare)
  • A well-resolved phylogeny of the trees of Puerto Rico based on DNA barcode sequence data
  • 2014
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 9:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Background The use of phylogenetic information in community ecology and conservation has grown in recent years. Two key issues for community phylogenetics studies, however, are (i) low terminal phylogenetic resolution and (ii) arbitrarily defined species pools. Methodology/principal findings We used three DNA barcodes (plastid DNA regions rbcL, matK, and trnH-psbA) to infer a phylogeny for 527 native and naturalized trees of Puerto Rico, representing the vast majority of the entire tree flora of the island (89%). We used a maximum likelihood (ML) approach with and without a constraint tree that enforced monophyly of recognized plant orders. Based on 50% consensus trees, the ML analyses improved phylogenetic resolution relative to a comparable phylogeny generated with Phylomatic (proportion of internal nodes resolved: constrained ML = 74%, unconstrained ML = 68%, Phylomatic = 52%). We quantified the phylogenetic composition of 15 protected forests in Puerto Rico using the constrained ML and Phylomatic phylogenies. We found some evidence that tree communities in areas of high water stress were relatively phylogenetically clustered. Reducing the scale at which the species pool was defined (from island to soil types) changed some of our results depending on which phylogeny (ML vs. Phylomatic) was used. Overall, the increased terminal resolution provided by the ML phylogeny revealed additional patterns that were not observed with a less-resolved phylogeny. Conclusions/significance With the DNA barcode phylogeny presented here (based on an island-wide species pool), we show that a more fully resolved phylogeny increases power to detect nonrandom patterns of community composition in several Puerto Rican tree communities. Especially if combined with additional information on species functional traits and geographic distributions, this phylogeny will (i) facilitate stronger inferences about the role of historical processes in governing the assembly and composition of Puerto Rican forests, (ii) provide insight into Caribbean biogeography, and (iii) aid in incorporating evolutionary history into conservation planning.
  •  
9.
  •  
10.
  • Schwartz, Naomi B., et al. (författare)
  • Topography and Traits Modulate Tree Performance and Drought Response in a Tropical Forest
  • 2020
  • Ingår i: Frontiers in Forests and Global Change. - : FRONTIERS MEDIA SA. - 2624-893X. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • Predicting drought responses of individual trees in tropical forests remains challenging, in part because trees experience drought differently depending on their position in spatially heterogeneous environments. Specifically, topography and the competitive environment can influence the severity of water stress experienced by individual trees, leading to individual-level variation in drought impacts. A drought in 2015 in Puerto Rico provided the opportunity to assess how drought response varies with topography and neighborhood crowding in a tropical forest. In this study, we integrated 3 years of annual census data from the El Yunque Chronosequence plots with measurements of functional traits and LiDAR-derived metrics of microsite topography. We fit hierarchical Bayesian models to examine how drought, microtopography, and neighborhood crowding influence individual tree growth and survival, and the role functional traits play in mediating species' responses to these drivers. We found that while growth was lower during the drought year, drought had no effect on survival, suggesting that these forests are fairly resilient to a single-year drought. However, growth response to drought, as well as average growth and survival, varied with topography: tree growth in valley-like microsites was more negatively affected by drought, and survival was lower on steeper slopes while growth was higher in valleys. Neighborhood crowding reduced growth and increased survival, but these effects did not vary between drought/non-drought years. Functional traits provided some insight into mechanisms by which drought and topography affected growth and survival. For example, trees with high specific leaf area grew more slowly on steeper slopes, and high wood density trees were less sensitive to drought. However, the relationships between functional traits and response to drought and topography were weak overall. Species sorting across microtopography may drive observed relationships between average performance, drought response, and topography. Our results suggest that understanding species' responses to drought requires consideration of the microenvironments in which they grow. Complex interactions between regional climate, topography, and traits underlie individual and species variation in drought response.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10
Typ av publikation
tidskriftsartikel (10)
Typ av innehåll
refereegranskat (10)
Författare/redaktör
Muscarella, Robert (7)
Lohbeck, Madelon (5)
Schwartz, Naomi B. (5)
Balvanera, Patricia (4)
Bongers, Frans (4)
Martínez-Ramos, Migu ... (4)
visa fler...
Mora, Francisco (4)
Munoz, Rodrigo (4)
Chazdon, Robin L. (4)
Becknell, Justin M. (4)
Boukili, Vanessa (4)
Brancalion, Pedro H. ... (4)
Craven, Dylan (4)
Hall, Jefferson S. (4)
Hernández-Stefanoni, ... (4)
Kennard, Deborah (4)
Letcher, Susan G. (4)
Meave, Jorge A. (4)
Pérez-García, Eduard ... (4)
Powers, Jennifer S. (4)
Dent, Daisy H. (3)
Rozendaal, Danaë M. ... (3)
Aide, T. Mitchell (3)
Cabral, George A. L. (3)
Denslow, Julie S. (3)
DeWalt, Saara J. (3)
Dupuy, Juan M. (3)
Durán, Sandra M. (3)
César, Ricardo G. (3)
Junqueira, André B. (3)
Ochoa-Gaona, Susana (3)
Orihuela-Belmonte, E ... (3)
Peña-Claros, Marielo ... (3)
Piotto, Daniel (3)
Rodríguez-Velazquez, ... (3)
Sanchez-Azofeifa, Ar ... (3)
Reich, Peter B (2)
Lasky, Jesse R (2)
Broadbent, Eben N. (2)
Almeida-Cortez, Jarc ... (2)
de Jong, Ben (2)
Espírito-Santo, Mari ... (2)
Fandino, María C. (2)
Jakovac, Catarina C. (2)
Massoca, Paulo (2)
Mesquita, Rita (2)
Nunes, Yule R. F. (2)
Ruíz, Jorge (2)
Saldarriaga, Juan G. (2)
Steininger, Marc K. (2)
visa färre...
Lärosäte
Uppsala universitet (7)
Göteborgs universitet (2)
Umeå universitet (1)
Stockholms universitet (1)
Karlstads universitet (1)
Sveriges Lantbruksuniversitet (1)
Språk
Engelska (10)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (10)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy