SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Talbi D.) "

Search: WFRF:(Talbi D.)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Wakelam, V., et al. (author)
  • The 2014 KIDA Network for Interstellar Chemistry
  • 2015
  • In: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 217:2
  • Journal article (peer-reviewed)abstract
    • Chemical models used to study the chemical composition of the gas and the ices in the interstellar medium are based on a network of chemical reactions and associated rate coefficients. These reactions and rate coefficients are partially compiled from data in the literature, when available. We present in this paper kida.uva.2014, a new updated version of the kida.uva public gas-phase network first released in 2012. In addition to a description of the many specific updates, we illustrate changes in the predicted abundances of molecules for cold dense cloud conditions as compared with the results of the previous version of our network, kida.uva.2011.
  •  
2.
  • Wakelam, V., et al. (author)
  • A KINETIC DATABASE FOR ASTROCHEMISTRY (KIDA)
  • 2012
  • In: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 199:1, s. 21-
  • Journal article (peer-reviewed)abstract
    • We present a novel chemical database for gas-phase astrochemistry. Named the KInetic Database for Astrochemistry (KIDA), this database consists of gas-phase reactions with rate coefficients and uncertainties that will be vetted to the greatest extent possible. Submissions of measured and calculated rate coefficients are welcome, and will be studied by experts before inclusion into the database. Besides providing kinetic information for the interstellar medium, KIDA is planned to contain such data for planetary atmospheres and for circumstellar envelopes. Each year, a subset of the reactions in the database (kida.uva) will be provided as a network for the simulation of the chemistry of dense interstellar clouds with temperatures between 10 K and 300 K. We also provide a code, named Nahoon, to study the time-dependent gas-phase chemistry of zero-dimensional and one-dimensional interstellar sources.
  •  
3.
  •  
4.
  •  
5.
  • Wakelam, V., et al. (author)
  • Reaction Networks for Interstellar Chemical Modelling : Improvements and Challenges
  • 2010
  • In: Space Science Reviews. - : Springer Science and Business Media LLC. - 0038-6308 .- 1572-9672. ; 156:04-jan, s. 13-72
  • Research review (peer-reviewed)abstract
    • We survey the current situation regarding chemical modelling of the synthesis of molecules in the interstellar medium. The present state of knowledge concerning the rate coefficients and their uncertainties for the major gas-phase processes-ion-neutral reactions, neutral-neutral reactions, radiative association, and dissociative recombination-is reviewed. Emphasis is placed on those key reactions that have been identified, by sensitivity analyses, as 'crucial' in determining the predicted abundances of the species observed in the interstellar medium. These sensitivity analyses have been carried out for gas-phase models of three representative, molecule-rich, astronomical sources: the cold dense molecular clouds TMC-1 and L134N, and the expanding circumstellar envelope IRC +10216. Our review has led to the proposal of new values and uncertainties for the rate coefficients of many of the key reactions. The impact of these new data on the predicted abundances in TMC-1 and L134N is reported. Interstellar dust particles also influence the observed abundances of molecules in the interstellar medium. Their role is included in gas-grain, as distinct from gas-phase only, models. We review the methods for incorporating both accretion onto, and reactions on, the surfaces of grains in such models, as well as describing some recent experimental efforts to simulate and examine relevant processes in the laboratory. These efforts include experiments on the surface-catalyzed recombination of hydrogen atoms, on chemical processing on and in the ices that are known to exist on the surface of interstellar grains, and on desorption processes, which may enable species formed on grains to return to the gas-phase.
  •  
6.
  • Gal, R. Le, et al. (author)
  • The ortho-to-para ratio of H2Cl+: Quasi-classical trajectory calculations and new simulations in light of new observations
  • 2017
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 608, s. A96-
  • Journal article (peer-reviewed)abstract
    • Multi-hydrogenated species with proper symmetry properties can present different spin configurations, and thus exist under different spin symmetry forms, labeled as para and ortho for two-hydrogen molecules. We investigated here the ortho-to-para ratio (OPR) of H2Cl+ in the light of new observations performed in the z = 0.89 absorber toward the lensed quasar PKS 1830−211 with the Atacama Large Millimeter/submillimeter Array (ALMA). Two independent lines of sight were observed, to the southwest (SW) and northeast (NE) images of the quasar, with OPR values found to be 3.15 ± 0.13 and 3.1 ± 0.5 in each region, respectively, in agreement with a spin statistical weight of 3:1. An OPR of 3:1 for a molecule containing two identical hydrogen nuclei can refer to either a statistical result or a high-temperature limit depending on the reaction mechanism leading to its formation. It is thus crucial to identify rigorously how OPRs are produced in order to constrain the information that these probes can provide. To understand the production of the H2Cl+ OPR, we undertook a careful theoretical study of the reaction mechanisms involved with the aid of quasi-classical trajectory calculations on a new global potential energy surface fit to a large number of high-level ab initio data. Our study shows that the major formation reaction for H2Cl+ produces this ion via a hydrogen abstraction rather than a scrambling mechanism. Such a mechanism leads to a 3:1 OPR, which is not changed by destruction and possible thermalization reactions for H2Cl+ and is thus likely to be the cause of observed 3:1 OPR ratios, contrary to the normal assumption of scrambling.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view