SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tarvainen Lasse 1977) "

Sökning: WFRF:(Tarvainen Lasse 1977)

  • Resultat 1-10 av 40
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Klemedtsson, Leif, 1953, et al. (författare)
  • Skogaryd – Integration of terrestrial and freshwater greenhouse gas sources and sinks
  • 2010
  • Ingår i: 1st COST meeting ‘Belowground carbon in Europeanforest’, Birmensdorf, Switzerland, 26–28 January 2010..
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Forests play an important role in the global carbon (C) cycle, and management as well as climate can cause major effects on the balance of C between the atmosphere and the plant/soil system. With re-gard to our commitments to the Kyoto and post-Kyoto actions on climate change, we need reliable predictions on how this balance is affected by management and climate. In 2006 the Skogaryd Research Forest was established in the southwest of Sweden (58°23’N, 12°09’E). The overall goal is to quantify net greenhouse gas (GHG) fluxes from drained spruce forest, by determining the individual fluxes and pools of C and nitrogen and elucidating their connection to site fertility, drainage status and abiotic parameters and then use the generated data in GHG models, for model validations and ultimately emissions predictions. During 2006-2009 the research has fo-cused on two sites, mineral and organic, dominated by Norway spruce (Picea abies). Both sites are drained fertile soils but with different land-use history that have affected their physical properties. Measurements includes: net ecosystem exchange of CO2, Shoot photosynthesis and respiration at different locations within the canopy, stem respiration, emissions of N2O and CH4 using manual cham-bers, soil respiration with automatic chambers including a trenching experiment where root-, mycelia-, and heterotrophic respiration are separated, fine root production using minirhizotrons, and mycelia production. The organic site also includes a wood ash experiment. From 2010 the research will be expanded to the whole watershed, from the mire system via streams, riparian zones, forests, to lakes and the subsequent exchange between the atmosphere and surface waters. Different terrestrial and limnic ecosystems will be linked holistically, using site specific tech-niques at different scales, from aircraft (km2) to chambers (m2) to create integrated models that can be used to quantify net GHG flux for management strategies.
  •  
2.
  • Meyer, Astrid, et al. (författare)
  • A fertile peatland forest does not constitute a major greenhouse gas sink
  • 2013
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 10, s. 7739-7758
  • Tidskriftsartikel (refereegranskat)abstract
    • Afforestation has been proposed as a strategy to mitigate the often high greenhouse gas (GHG) emissions from agricultural soils with high organic matter content. However, the carbon dioxide (CO2) and nitrous oxide (N2O) fluxes after afforestation can be considerable, depending predominantly on site drainage and nutrient availability. Studies on the full GHG budget of afforested organic soils are scarce and hampered by the uncertainties associated with methodology. In this study we etermined the GHG budget of a spruce-dominated forest on a drained organic soil with an agricultural history. Two different approaches for determining the net ecosystem CO2 exchange (NEE) were applied, for the year 2008, one direct (eddy covariance) and the other indirect (analyzing the different components of the GHG budget), so that uncertainties in each method could be evaluated. The annual tree production in 2008 was 8.3±3.9 tC ha−1 yr−1 due to the high levels of soil nutrients, the favorable climatic conditions and the fact that the forest was probably in its phase of maximum C assimilation or shortly past it. The N2O fluxes were determined by the closed-chamber technique and amounted to 0.9±0.8 tCeq ha−1 yr−1. According to the direct measurements from the eddy covariance technique, the site acts as a minor GHG sink of −1.2±0.8 t Ceq ha−1 yr−1. This contrasts with the NEE estimate derived from the indirect approach which suggests that the site is a net GHG emitter of 0.6±4.5 tCeq ha−1 yr−1. Irrespective of the approach applied, the soil CO2 effluxes counter large amounts of the C sequestration by trees. Due to accumulated uncertainties involved in the indirect approach, the direct approach is considered the more reliable tool. As the rate of C sequestration will likely decrease with forest age, the site will probably become a GHG source once again as the trees do not compensate for the soil C and N losses. Also forests in younger age stages have been shown to have lower C assimilation rates; thus, the overall GHG sink potential of this afforested nutrient-rich organic soil is probably limited to the short period of maximum C assimilation.
  •  
3.
  • Tarvainen, Lasse, 1977, et al. (författare)
  • Handling the heat - photosynthetic thermal stress in tropical trees.
  • 2022
  • Ingår i: The New phytologist. - : Wiley. - 1469-8137 .- 0028-646X. ; 233:1, s. 236-50
  • Tidskriftsartikel (refereegranskat)abstract
    • Warming climate increases the risk for harmful leaf temperatures in terrestrial plants, causing heat stress and loss of productivity. The heat sensitivity may be particularly high in equatorial tropical tree species adapted to a thermally stable climate. Thermal thresholds of the photosynthetic system of sun-exposed leaves were investigated in three tropical montane tree species native to Rwanda with different growth and water use strategies (Harungana montana, Syzygium guineense and Entandrophragma exselsum). Measurements of chlorophyll fluorescence, leaf gas exchange, morphology, chemistry and temperature were made at three common gardens along an elevation/temperature gradient. Heat tolerance acclimated to maximum leaf temperature (Tleaf ) across the species. At the warmest sites, the thermal threshold for normal function of photosystem II was exceeded in the species with the highest Tleaf despite their higher heat tolerance. This was not the case in the species with the highest transpiration rates and lowest Tleaf . The results point to two differently effective strategies for managing thermal stress: tolerance through physiological adjustment of leaf osmolality and thylakoid membrane lipid composition, or avoidance through morphological adaptation and transpiratory cooling. More severe photosynthetic heat stress in low-transpiring montane climax species may result in a competitive disadvantage compared to high-transpiring pioneer species with more efficient leaf cooling.
  •  
4.
  • Wittemann, Maria, et al. (författare)
  • Temperature acclimation of net photosynthesis and its underlying component processes in four tropical tree species
  • 2022
  • Ingår i: Tree Physiology. - : Oxford University Press (OUP). - 0829-318X .- 1758-4469. ; 42:6, s. 1188-1202
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of temperature change on leaf physiology has been extensively studied in temperate trees and to some extent in boreal and tropical tree species. While increased temperature typically stimulates leaf CO2 assimilation and tree growth in high-altitude ecosystems, tropical species are often negatively affected. These trees may operate close to their temperature optima and have a limited thermal acclimation capacity due to low seasonal and historical variation in temperature. To test this hypothesis, we studied the extent to which the temperature sensitivities of leaf photosynthesis and respiration acclimate to growth temperature in four common African tropical tree species. Tree seedlings native to different altitudes and therefore adapted to different growth temperatures were cultivated at three different temperatures in climate-controlled chambers. We estimated the acclimation capacity of the temperature sensitivities of light-saturated net photosynthesis, the maximum rates of Rubisco carboxylation (V-cmax) and thylakoid electron transport (J), and dark respiration. Leaf thylakoid membrane lipid composition, nitrogen content and leaf mass per area were also analyzed. Our results showed that photosynthesis in tropical tree species acclimated to higher growth temperatures, but that this was weakest in the species originating from the coolest climate. The temperature optimum of J acclimated significantly in three species and variation in J was linked to changes in the thylakoid membrane lipid composition. For V-cmax, there was only evidence of significant acclimation of optimal temperature in the lowest elevation species. Respiration acclimated to maintain homeostasis at growth temperature in all four species. Our results suggest that the lowest elevation species is better physiologically adapted to acclimate to high growth temperatures than the highest elevation species, indicating a potential shift in competitive balance and tree community composition to the disadvantage of montane tree species in a warmer world.
  •  
5.
  • Dai, L. L., et al. (författare)
  • Reduced photosynthetic thermal acclimation capacity under elevated ozone in poplar (Populus tremula) saplings
  • 2021
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 27:10, s. 2159-2173
  • Tidskriftsartikel (refereegranskat)abstract
    • The sensitivity of photosynthesis to temperature has been identified as a key uncertainty for projecting the magnitude of the terrestrial carbon cycle response to future climate change. Although thermal acclimation of photosynthesis under rising temperature has been reported in many tree species, whether tropospheric ozone (O-3) affects the acclimation capacity remains unknown. In this study, temperature responses of photosynthesis (light-saturated rate of photosynthesis (A(sat)), maximum rates of RuBP carboxylation (V-cmax), and electron transport (J(max)) and dark respiration (R-dark) of Populus tremula exposed to ambient O-3 (AO(3), maximum of 30 ppb) or elevated O-3 (EO3, maximum of 110 ppb) and ambient or elevated temperature (ambient +5 degrees C) were investigated in solardomes. We found that the optimum temperature of A(sat) (T-optA) significantly increased in response to warming. However, the thermal acclimation capacity was reduced by O-3 exposure, as indicated by decreased T-optA, and temperature optima of V-cmax (T-optV) and J(max) (T-optJ) under EO3. Changes in both stomatal conductance (g(s)) and photosynthetic capacity (V-cmax and J(max)) contributed to the shift of T-optA by warming and EO3. Neither R-dark measured at 25 degrees C (Rdark25) nor the temperature response of R-dark was affected by warming, EO3, or their combination. The responses of A(sat), V-cmax, and J(max) to warming and EO3 were closely correlated with changes in leaf nitrogen (N) content and N use efficiency. Overall, warming stimulated growth (leaf biomass and tree height), whereas EO3 reduced growth (leaf and woody biomass). The findings indicate that thermal acclimation of A(sat) may be overestimated if the impact of O-3 pollution is not taken into account.
  •  
6.
  • De Kauwe, M. G., et al. (författare)
  • A test of the ‘one-point method’ for estimating maximum carboxylation capacity from field-measured, light-saturated photosynthesis
  • 2016
  • Ingår i: New Phytologist. - : Wiley. - 0028-646X .- 1469-8137. ; 210:3, s. 1130-1144
  • Tidskriftsartikel (refereegranskat)abstract
    • Simulations of photosynthesis by terrestrial biosphere models typically need a specification of the maximum carboxylation rate (Vcmax). Estimating this parameter using A–Ci curves (net photosynthesis, A, vs intercellular CO2 concentration, Ci) is laborious, which limits availability of Vcmax data. However, many multispecies field datasets include net photosynthetic rate at saturating irradiance and at ambient atmospheric CO2 concentration (Asat) measurements, from which Vcmax can be extracted using a ‘one-point method’. We used a global dataset of A–Ci curves (564 species from 46 field sites, covering a range of plant functional types) to test the validity of an alternative approach to estimate Vcmax from Asat via this ‘one-point method’. If leaf respiration during the day (Rday) is known exactly, Vcmax can be estimated with an r2 value of 0.98 and a root-mean-squared error (RMSE) of 8.19 μmol m−2 s−1. However, Rday typically must be estimated. Estimating Rday as 1.5% of Vcmax, we found that Vcmax could be estimated with an r2 of 0.95 and an RMSE of 17.1 μmol m−2 s−1. The one-point method provides a robust means to expand current databases of field-measured Vcmax, giving new potential to improve vegetation models and quantify the environmental drivers of Vcmax variation.
  •  
7.
  • Dewar, R. C., et al. (författare)
  • Why does leaf nitrogen decline within tree canopies less rapidly than light? An explanation from optimization subject to a lower bound on leaf mass per area
  • 2012
  • Ingår i: Tree Physiology. - : Oxford University Press (OUP). - 0829-318X .- 1758-4469. ; 32:5, s. 520-534
  • Tidskriftsartikel (refereegranskat)abstract
    • A long-established theoretical result states that, for a given total canopy nitrogen (N) content, canopy photosynthesis is maximized when the within-canopy gradient in leaf N per unit area (N-a) is equal to the light gradient. However, it is widely observed that N-a declines less rapidly than light in real plant canopies. Here we show that this general observation can be explained by optimal leaf acclimation to light subject to a lower-bound constraint on the leaf mass per area (m(a)). Using a simple model of the carbon-nitrogen (C-N) balance of trees with a steady-state canopy, we implement this constraint within the framework of the MAXX optimization hypothesis that maximizes net canopy C export. Virtually all canopy traits predicted by MAXX (leaf N gradient, leaf N concentration, leaf photosynthetic capacity, canopy N content, leaf-area index) are in close agreement with the values observed in a mature stand of Norway spruce trees (Picea abies L. Karst.). An alternative upper-bound constraint on leaf photosynthetic capacity (A(sat)) does not reproduce the canopy traits of this stand. MAXX subject to a lower bound on m(a) is also qualitatively consistent with co-variations in leaf N gradient, m(a) and A(sat) observed across a range of temperate and tropical tree species. Our study highlights the key role of constraints in optimization models of plant function.
  •  
8.
  • He, Hongxing, 1987, et al. (författare)
  • Forests on drained agricultural peatland are potentially large sources of greenhouse gases – insights from a full rotation period simulation
  • 2015
  • Ingår i: Biogeosciences Discussions. - : Copernicus GmbH. - 1810-6277. ; 12, s. 19673-19710
  • Tidskriftsartikel (refereegranskat)abstract
    • The CoupModel was used to simulate a Norway Spruce forest on fertile drained peat over 60 years, from planting in 1951 until 2011, describing abiotic, biotic and greenhouse gas (GHG) emissions (CO2 and N2O). By calibrating the model against tree ring data we obtained a "reference" model by which we were able to describe the fluxes and controlling factors over the 60 years. We discuss some conceptual issues relevant to improving the model in order to better understand peat soil simulations. However, the present model was able to describe the most important ecosystem dynamics such as the plant biomass development and GHG emissions. The GHG fluxes are composed of two important quantities, the forest carbon (C) uptake, 405 g C m−2 yr−1 and the decomposition of peat soil, 396 g C m−2 yr−1. N2O emissions contribute to the GHG emissions by 0.5 g N m−2 yr−1, corresponding to 56.8 g C m−2 yr−1. The 60-year-old Spruce forest has an accumulated biomass of 164 Mg C ha−1. However, over this period 208 Mg C ha−1 GHG has been added to the atmosphere, which means a net addition of GHG emissions. The main losses are from the peat soil and, indirectly, from forest thinning products, which we assume have a short lifetime. We conclude that after harvest at an age of 80 years, most of the stored biomass carbon is liable to be released, the system having captured C only temporarily and with a cost of disappeared peat, adding CO2 to the atmosphere.
  •  
9.
  • He, Hongxing, 1987, et al. (författare)
  • Forests on drained agricultural peatland are potentially large sources of greenhouse gases – insights from a full rotation period simulation
  • 2016
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 13, s. 2305-2318
  • Tidskriftsartikel (refereegranskat)abstract
    • The CoupModel was used to simulate a Norway spruce forest on fertile drained peat over 60 years, from planting in 1951 until 2011, describing abiotic, biotic and greenhouse gas (GHG) emissions (CO2 and N2O). By calibrating the model against tree ring data a “vegetation fitted” model was obtained by which we were able to describe the fluxes and controlling factors over the 60 years. We discuss some conceptual issues relevant to improving the model in order to better understand peat soil simulations. However, the present model was able to describe the most important ecosystem dynamics such as the plant biomass development and GHG emissions. The GHG fluxes are composed of two important quantities, the spruce forest carbon (C) uptake, 413 g C m-2 yr-1 and the decomposition of peat soil, 399 gCm-2 yr-1. N2O emissions contribute to the GHG emissions by up to 0.7 gNm-2 yr-1, corresponding to 76 g Cm-2 yr-1. The 60-year old spruce forest has an accumulated biomass of 16.0 kg Cm-2 (corresponding to 60 kgCO2 m-2). However, over this period, 26.4 kg m-2 (97 kgCO2eqm-2) has been added to the atmosphere, as both CO2 and N2O originating from the peat soil and, indirectly, from forest thinning products, which we assume have a short lifetime. We conclude that after harvest at an age of 80 years, most of the stored biomass carbon is liable to be released, the system having captured C only temporarily and with a cost of disappeared peat, adding CO2 to the atmosphere.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 40
Typ av publikation
tidskriftsartikel (32)
konferensbidrag (6)
rapport (1)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (32)
övrigt vetenskapligt/konstnärligt (8)
Författare/redaktör
Wallin, Göran, 1955 (21)
Marshall, John (11)
Uddling, Johan, 1972 (8)
Näsholm, Torgny (8)
Linder, Sune (5)
Klemedtsson, Leif, 1 ... (5)
visa fler...
Peichl, Matthias (3)
Ottosson Löfvenius, ... (3)
Svensson, Magnus (3)
Lundmark, Tomas (3)
He, Hongxing, 1987 (3)
Kasimir, Åsa, 1956 (3)
Xu, Y. (2)
Lindroth, Anders (2)
Andersson, Mats X., ... (2)
Ntirugulirwa, Bonave ... (2)
Rütting, Tobias, 197 ... (2)
Björk, Robert G., 19 ... (2)
Feng, Z. (2)
Weslien, Per, 1963 (2)
Rogers, A (2)
Wang, H. (1)
Wang, M. (1)
Nilsson, Mats (1)
Linderson, Maj-Lena (1)
Spetea, Cornelia, 19 ... (1)
Bastviken, David (1)
Ellsworth, David (1)
Tranvik, Lars (1)
Svensson, Daniel (1)
Rogers, Alistair (1)
Pleijel, Håkan, 1958 (1)
Sobek, Sebastian (1)
Aloysie, Manishimwe (1)
Mujawamariya, Myriam (1)
Sun, Wei (1)
Rutgersson, Anna (1)
Weyhenmeyer, Gesa (1)
Klingberg, Jenny, 19 ... (1)
Crill, Patrick (1)
Boeckx, Pascal (1)
Ekblad, Alf (1)
Prentice, I. C. (1)
Eilertsen, Lill (1)
Zaragoza-Castells, J ... (1)
Öquist, Mats (1)
Parker, K (1)
Bonal, Damien (1)
Rowland, Lucy (1)
Thomsen, Frida (1)
visa färre...
Lärosäte
Göteborgs universitet (40)
Sveriges Lantbruksuniversitet (19)
Lunds universitet (2)
Umeå universitet (1)
Kungliga Tekniska Högskolan (1)
Språk
Engelska (40)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (40)
Lantbruksvetenskap (20)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy