SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tempelmann David) "

Sökning: WFRF:(Tempelmann David)

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Hosseini, Seyed M., et al. (författare)
  • Stabilization of a swept-wing boundary layer by distributed roughness elements
  • 2013
  • Ingår i: Journal of Fluid Mechanics. - : Cambridge University Press (CUP). - 0022-1120 .- 1469-7645. ; 718, s. R1-
  • Tidskriftsartikel (refereegranskat)abstract
    • The stabilization of a swept-wing boundary layer by distributed surface roughness elements is studied by performing direct numerical simulations. The configuration resembles experiments studied by Saric and coworkers at Arizona State University, who employed this control method in order to delay transition. An array of cylindrical roughness elements are placed near the leading edge to excite subcritical cross-flow modes. Subcritical refers to the modes that are not critical with respect to transition. Their amplification to nonlinear amplitudes modifies the base flow such that the most unstable cross-flow mode and secondary instabilities are damped, resulting in downstream shift of the transition location. The experiments by Saric and coworkers were performed at low levels of free stream turbulence, and the boundary layer was therefore dominated by stationary cross-flow disturbances. Here, we consider a more complex disturbance field, which comprises both steady and unsteady instabilities of similar amplitudes. It is demonstrated that the control is robust with respect to complex disturbance fields as transition is shifted from 45 to 65% chord.
  •  
3.
  • Schrader, Lars-Uve, et al. (författare)
  • Excitation of cross-ow vortices by surface roughness on a sweptwing
  • 2011
  • Konferensbidrag (refereegranskat)abstract
    • We have carried out direct numerical simulations (DNS) of the flow over a wing with 45° sweep and -4° angle-of-attack. On the upper wing side, a substantial cross flow creates ideal conditions for the study of cross-flow instability. Our simulation models a wind-tunnel experiment carried out at the Arizona State University (ASU), where 6μm high roughness cylinders were used to excite steady cross-flow vortices. We have successfully reproduced the linear growth rate of these vortices, whereas the receptivity amplitude obtained from our DNS is 40% of that measured in the experiment. Possible reasons for this discrepancy have been investigated by refining the roughness model of the DNS on the one hand, and, on the other hand, by carefully comparing the results from the DNS and the experiment with solutions to the parabolized stability equations (PSE). Good agreement between all approaches could be obtained when assuming a roughness height of 15μm. This suggests that the roughness cylinders in the experiment might have been slightly higher than 6μm, or that natural roughness might have contributed to the receptivity. Moreover, small differences in the pressure distribution or the presence of weak free-stream fluctuations in the wind tunnel may explain the larger modal amplitude measured in the ASU experiment.
  •  
4.
  • Schrader, Lars-Uve, et al. (författare)
  • Numerical study of boundary-layer receptivity on a swept wing
  • 2010
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • Direct numerical simulations (DNS) of the flow over a wing with 45◦ sweep and −4◦ angle-of-attack are presented. This flow configuration was investigated in a series of wind-tunnel experiments at the Arizona State University (ASU). On the upper wing side, the flow develops a substantial crossflow and is therefore ideally suited for a study of the receptivity mechanisms of crossflow vortices. Here, we examine the boundary-layer receptivity to surface roughness and to single vortical free-stream modes. The roughness is modeled by a shallow circular disk and is identical with one single element of the spanwise roughness array considered in the ASU experiments. The boundary layer develops a steady crossflow mode downstream of the roughness. The spatial evolution of the modal amplitude obtained by the DNS is in excellent agreement with a solution to the nonlinear parabolized stability equations (NPSE) while being lower than that measured in the experiments. The reasons for this discrepancy are yet to be determined. Possible explanations are the idealization of the roughness array by spanwise periodic boundary conditions in our simulations, or the presence of traveling crossflow waves due to background free-stream turbulence in the experiments. We demonstrate that the boundary-layer receptivity to roughness can be successfully predicted by a nonlocal, adjoint-based receptivity model. Stationary crossflow vortices can also be triggered by zero-frequency free-stream vortical modes. We consider two types of mode, carrying stream wise and chordwise vorticity. Both modes give rise to nonmodal disturbances near the leading edge, which soon evolve into a steady crossflow mode. The boundary layer is found to be somewhat more receptive to the streamwisevorticity mode than to the chordwise vorticity.
  •  
5.
  • Tempelmann, David, et al. (författare)
  • Modelling roughness and receptivity in three-dimensional boundary layers
  • 2011
  • Ingår i: 7th International Symposium on Turbulence and Shear Flow Phenomena, TSFP 2011. - : International Symposium on Turbulence and Shear Flow Phenomena, TSFP. ; , s. 1-6
  • Konferensbidrag (refereegranskat)abstract
    • The receptivity of a swept-wing boundary layer to localised surface roughness is studied by means of direct numerical simulations (DNS). The flow case considered is meant to model wind tunnel experiments performed at the Arizona State University by Saric & coworkers. The receptivity amplitude of the crossflow disturbances predicted by the DNS is 40% of that measured in the experiments. The DNS results are then used to evaluate the performance of different receptivity models based on either the parabolised stability equations or the finite Reynolds number theory (FRNT). In general it is found that receptivity amplitudes are well predicted for micron sized roughness elements if non-parallel effects are accounted for. 
  •  
6.
  • Tempelmann, David, et al. (författare)
  • Numerical study of boundary-layer receptivity on a swept wing
  • 2011
  • Ingår i: 6th AIAA Theoretical Fluid Mechanics Conference. - Reston, Virigina : American Institute of Aeronautics and Astronautics (AIAA).
  • Konferensbidrag (refereegranskat)abstract
    • Direct numerical simulations (DNS) of the flow over a wing with 45° sweep and -4° angle-of-attack are presented. This flow configuration was investigated in a series of wind-tunnel experiments at the Arizona State University (ASU). Here, we examine the boundary-layer receptivity to surface roughness and to single vortical free-stream modes. The roughness is modeled by a shallow circular disk and is identical with one single element of the spanwise roughness array considered in the ASU experiments. The boundary layer develops a steady crossflow mode downstream of the roughness. The spatial evolution of the modal amplitude obtained by the DNS is in excellent agreement with a solution to the nonlinear parabolized stability equations (NPSE) while being lower than that measured in the experiments. The reasons for this discrepancy are yet to be determined. Possible explanations are the presence of traveling crossflow waves due to background free-stream turbulence in the experiments or the slight difference between the numerical and experimental pressure gradients at the roughness site. Stationary crossflow vortices can also be triggered by zero-frequency free-stream vortical modes. We consider two types of mode, carrying streamwise and vertical vorticity. Both modes give rise to nonmodal disturbances near the leading edge, which soon evolve into a steady crossflow mode. The boundary layer is found to be somewhat more receptive to the streamwise-vorticity mode than to the chordwise vorticity. Copyright
  •  
7.
  •  
8.
  • Tempelmann, David (författare)
  • Receptivity of crossflow-dominated boundary layers
  • 2011
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis deals with receptivity mechanisms of three-dimensional, crossflow-dominated boundary layers. The receptivity of two model problems, a swept-flat-plate and a swept-wing boundary layer, is investigated by solving the parabolised stability equations (PSE) as well as by performing direct numerical simulations (DNS).Both flow cases are known to exhibit strong inflectional instabilities, the crossflow disturbances, whose excitation by external disturbances such as surface roughness or free-stream vorticity is studied. One focus is on worst-case scenarios. This involves the determination of optimal conditions, i.e. those disturbance environments yielding the largest possible response inside the boundary layer. A new method on the basis of the PSE is presented which allows to study optimal disturbances of swept-flat-plate boundary layers. These take the form of tilted streamwise vortices. While convected downstream they develop into streamwise streaks experiencing strong non-modal growth. Eventually, they turn into crossflow disturbances and undergo exponential growth. Non-modal growth is thus found to optimally excite crossflow disturbances and can be related to a receptivity mechanism of three-dimensional boundary layers. Evaluating effects of compressibility reveals that the potential for both non-modal and modal growth increases for higher Mach numbers. It is shown that wall cooling has diverse effects on disturbances of non-modal and modal nature. While destabilising the former it attenuates the growth of modal disturbances. Concave curvature on the other hand is found to be equally destabilising for both types of disturbances. The adjoint of the linearised Navier-Stokes equations is solved for a swept-wing boundary layer by means of DNS. The adjoint solution of a steady crossflow disturbance is computed in the boundary layer as well as in the free-stream upstream of the leading edge. This allows to determine receptivity to incoming free-stream disturbances and surface roughness as well as the corresponding worst-case scenarios. Upstream of a swept wing the optimal initial free-stream disturbance is found to be of streak-type which convects downstream towards the leading edge. It entrains the boundary layer a short distance downstream of the stagnation line. While minor streamwise vorticity is present the streak component is dominant all the way into the boundary layer where the optimal disturbance turns into a crossflow mode. Futher, the worst-case surface roughness is determined. It takes a wavy shape and is distributed in the chordwise direction. It is shown that, under such optimal conditions, the swept-wing boundary layer is more receptive to surface roughness than to free-stream disturbances. Another focus of this work has been the development and evaluation of tools for receptivity prediction. Both DNS and direct and adjoint solutions of the PSE are used to predict the receptivity of a swept-wing boundary layer to localised surface roughness. The configuration conforms to wind tunnel experiments performed by Saric and coworkers at the Arizona State University. Both the DNS and the PSE are found to predict receptivity amplitudes which are in excellent agreement with each other. Though the predicted disturbance amplitudes are slightly lower than experimental measurements the overall agreement with experimental results is very satisfactory. Finally, a DNS of the stabilisation of a transitional swept-wing boundary layer by means of discrete roughness elements is presented. This control approach is found to completely suppress transition to turbulence within the domain studied and confirms experimental results by Saric & coworkers.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy