SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Terreran G.) "

Sökning: WFRF:(Terreran G.)

  • Resultat 1-10 av 23
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Smartt, S. J., et al. (författare)
  • A kilonova as the electromagnetic counterpart to a gravitational-wave source
  • 2017
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 551:7678, s. 75-
  • Tidskriftsartikel (refereegranskat)abstract
    • Gravitational waves were discovered with the detection of binary black-hole mergers(1) and they should also be detectable from lower-mass neutron-star mergers. These are predicted to eject material rich in heavy radioactive isotopes that can power an electromagnetic signal. This signal is luminous at optical and infrared wavelengths and is called a kilonova(2-5). The gravitational-wave source GW170817 arose from a binary neutron-star merger in the nearby Universe with a relatively well confined sky position and distance estimate(6). Here we report observations and physical modelling of a rapidly fading electromagnetic transient in the galaxy NGC 4993, which is spatially coincident with GW170817 and with a weak, short.-ray burst(7,8). The transient has physical parameters that broadly match the theoretical predictions of blue kilonovae from neutron-star mergers. The emitted electromagnetic radiation can be explained with an ejected mass of 0.04 +/- 0.01 solar masses, with an opacity of less than 0.5 square centimetres per gram, at a velocity of 0.2 +/- 0.1 times light speed. The power source is constrained to have a power-law slope of -1.2 +/- 0.3, consistent with radioactive powering from r-process nuclides. (The r-process is a series of neutron capture reactions that synthesise many of the elements heavier than iron.) We identify line features in the spectra that are consistent with light r-process elements (atomic masses of 90-140). As it fades, the transient rapidly becomes red, and a higher-opacity, lanthanide-rich ejecta component may contribute to the emission. This indicates that neutron-star mergers produce gravitational waves and radioactively powered kilonovae, and are a nucleosynthetic source of the r-process elements.
  •  
2.
  • Cai, Y.-Z., et al. (författare)
  • Intermediate-luminosity red transients : Spectrophotometric properties and connection to electron-capture supernova explosions
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 654
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the spectroscopic and photometric study of five intermediate-luminosity red transients (ILRTs), namely AT 2010dn, AT 2012jc, AT 2013la, AT 2013lb, and AT 2018aes. They share common observational properties and belong to a family of objects similar to the prototypical ILRT SN 2008S. These events have a rise time that is less than 15 days and absolute peak magnitudes of between −11.5 and −14.5 mag. Their pseudo-bolometric light curves peak in the range 0.5–9.0 × 1040 erg s−1 and their total radiated energies are on the order of (0.3–3) × 1047 erg. After maximum brightness, the light curves show a monotonic decline or a plateau, resembling those of faint supernovae IIL or IIP, respectively. At late phases, the light curves flatten, roughly following the slope of the 56Co decay. If the late-time power source is indeed radioactive decay, these transients produce 56Ni masses on the order of 10−4 to 10−3 M⊙. The spectral energy distribution of our ILRT sample, extending from the optical to the mid-infrared (MIR) domain, reveals a clear IR excess soon after explosion and non-negligible MIR emission at very late phases. The spectra show prominent H lines in emission with a typical velocity of a few hundred km s−1, along with Ca II features. In particular, the [Ca II] λ7291,7324 doublet is visible at all times, which is a characteristic feature for this family of transients. The identified progenitor of SN 2008S, which is luminous in archival Spitzer MIR images, suggests an intermediate-mass precursor star embedded in a dusty cocoon. We propose the explosion of a super-asymptotic giant branch star forming an electron-capture supernova as a plausible explanation for these events.
  •  
3.
  • Gutiérrez, C. P., et al. (författare)
  • Type II supernovae in low-luminosity host galaxies
  • 2018
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 479:3, s. 3232-3253
  • Tidskriftsartikel (refereegranskat)abstract
    • We present an analysis of a new sample of type II core-collapse supernovae (SNe II) occurring within low-luminosity galaxies, comparing these with a sample of events in brighter hosts. Our analysis is performed comparing SN II spectral and photometric parameters and estimating the influence of metallicity (inferred from host luminosity differences) on SN II transient properties. We measure the SN absolute magnitude at maximum, the light-curve plateau duration, the optically thick duration, and the plateau decline rate in the V band, together with expansion velocities and pseudo-equivalent-widths (pEWs) of several absorption lines in the SN spectra. For the SN host galaxies, we estimate the absolute magnitude and the stellar mass, a proxy for the metallicity of the host galaxy. SNe II exploding in low-luminosity galaxies display weaker pEWs of Fe II lambda 5018, confirming the theoretical prediction that metal lines in SN II spectra should correlate with metallicity. We also find that SNe II in low-luminosity hosts have generally slower declining light curves and display weaker absorption lines. We find no relationship between the plateau duration or the expansion velocities with SN environment, suggesting that the hydrogen envelope mass and the explosion energy are not correlated with the metallicity of the host galaxy. This result supports recent predictions that mass-loss for red supergiants is independent of metallicity.
  •  
4.
  • Pastorello, A., et al. (författare)
  • Luminous red novae : Stellar mergers or giant eruptions?
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 630
  • Tidskriftsartikel (refereegranskat)abstract
    • We present extensive datasets for a class of intermediate-luminosity optical transients known as luminous red novae. They show double-peaked light curves, with an initial rapid luminosity rise to a blue peak (at -13 to -15 mag), which is followed by a longer-duration red peak that sometimes is attenuated, resembling a plateau. The progenitors of three of them (NGC 4490-2011OT1, M 101-2015OT1, and SNhunt248), likely relatively massive blue to yellow stars, were also observed in a pre-eruptive stage when their luminosity was slowly increasing. Early spectra obtained during the first peak show a blue continuum with superposed prominent narrow Balmer lines, with P Cygni profiles. Lines of Fe II are also clearly observed, mostly in emission. During the second peak, the spectral continuum becomes much redder, H alpha is barely detected, and a forest of narrow metal lines is observed in absorption. Very late-time spectra (similar to 6 months after blue peak) show an extremely red spectral continuum, peaking in the infrared (IR) domain. H alpha is detected in pure emission at such late phases, along with broad absorption bands due to molecular overtones (such as TiO, VO). We discuss a few alternative scenarios for luminous red novae. Although major instabilities of single massive stars cannot be definitely ruled out, we favour a common envelope ejection in a close binary system, with possibly a final coalescence of the two stars. The similarity between luminous red novae and the outburst observed a few months before the explosion of the Type IIn SN 2011ht is also discussed.
  •  
5.
  • Fiore, A., et al. (författare)
  • SN 2017gci : a nearby Type I Superluminous Supernova with a bumpy tail
  • 2021
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 502:2, s. 2120-2139
  • Tidskriftsartikel (refereegranskat)abstract
    • We present and discuss the optical spectrophotometric observations of the nearby (z = 0.087) Type I superluminous supernova (SLSN I) SN 2017gci, whose peak K-corrected absolute magnitude reaches M-g = -21.5 mag. Its photometric and spectroscopic evolution includes features of both slow- and of fast-evolving SLSN I, thus favoring a continuum distribution between the two SLSN-I subclasses. In particular, similarly to other SLSNe I, the multiband light curves (LCs) of SN 2017gci show two re-brightenings at about 103 and 142 d after the maximum light. Interestingly, this broadly agrees with a broad emission feature emerging around 6520 angstrom after similar to 51 d from the maximum light, which is followed by a sharp knee in the LC. If we interpret this feature as H alpha, this could support the fact that the bumps are the signature of late interactions of the ejecta with a (hydrogen-rich) circumstellar material. Then we fitted magnetar- and CSM-interaction-powered synthetic LCs on to the bolometric one of SN 2017gci. In the magnetar case, the fit suggests a polar magnetic field B-p similar or equal to 6 x 10(14) G, an initial period of the magnetar P-initial similar or equal to 2.8 ms, an ejecta mass M-ejecta similar or equal to 9M(circle dot) and an ejecta opacity kappa similar or equal to 0.08 cm(2) g(-1). A CSM-interaction scenario would imply a CSM mass similar or equal to 5 M-circle dot and an ejecta mass similar or equal to 12M(circle dot). Finally, the nebular spectrum of phase + 187 d was modeled, deriving a mass of similar or equal to 10 M-circle dot for the ejecta. Our models suggest that either a magnetar or CSM interaction might be the power sources for SN 2017gci and that its progenitor was a massive (40 M-circle dot) star.
  •  
6.
  • Smartt, S. J., et al. (författare)
  • PESSTO : survey description and products from the first data release by the Public ESO Spectroscopic Survey of Transient Objects
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 579
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The Public European Southern Observatory Spectroscopic Survey of Transient Objects (PESSTO) began as a public spectroscopic survey in April 2012. PESSTO classifies transients from publicly available sources and wide-field surveys, and selects science targets for detailed spectroscopic and photometric follow-up. PESSTO runs for nine months of the year, January - April and August - December inclusive, and typically has allocations of 10 nights per month. Aims. We describe the data reduction strategy and data products that are publicly available through the ESO archive as the Spectroscopic Survey data release 1 (SSDR1). Methods. PESSTO uses the New Technology Telescope with the instruments EFOSC2 and SOFI to provide optical and NIR spectroscopy and imaging. We target supernovae and optical transients brighter than 20.5(m) for classification. Science targets are selected for follow-up based on the PESSTO science goal of extending knowledge of the extremes of the supernova population. We use standard EFOSC2 set-ups providing spectra with resolutions of 13-18 angstrom between 3345-9995 angstrom. A subset of the brighter science targets are selected for SOFI spectroscopy with the blue and red grisms (0.935-2.53 mu m and resolutions 23-33 angstrom) and imaging with broadband JHK(s) filters. Results. This first data release (SSDR1) contains flux calibrated spectra from the first year (April 2012-2013). A total of 221 confirmed supernovae were classified, and we released calibrated optical spectra and classifications publicly within 24 h of the data being taken (via WISeREP). The data in SSDR1 replace those released spectra. They have more reliable and quantifiable flux calibrations, correction for telluric absorption, and are made available in standard ESO Phase 3 formats. We estimate the absolute accuracy of the flux calibrations for EFOSC2 across the whole survey in SSDR1 to be typically similar to 15%, although a number of spectra will have less reliable absolute flux calibration because of weather and slit losses. Acquisition images for each spectrum are available which, in principle, can allow the user to refine the absolute flux calibration. The standard NIR reduction process does not produce high accuracy absolute spectrophotometry but synthetic photometry with accompanying JHK(s) imaging can improve this. Whenever possible, reduced SOFI images are provided to allow this. Conclusions. Future data releases will focus on improving the automated flux calibration of the data products. The rapid turnaround between discovery and classification and access to reliable pipeline processed data products has allowed early science papers in the first few months of the survey.
  •  
7.
  • Sollerman, Jesper, et al. (författare)
  • Late-time observations of the extraordinary Type II supernova iPTF14hls
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 621
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We study iPTF14hls, a luminous and extraordinary long-lived Type II supernova, which lately has attracted much attention and disparate interpretation.Methods. We have presented new optical photometry that extends the light curves up to more than three years past discovery. We also obtained optical spectroscopy over this period, and furthermore present additional space-based observations using Swift and HST.Results. After an almost constant luminosity for hundreds of days, the later light curve of iPTF14hls finally fades and then displays a dramatic drop after about 1000 d, but the supernova is still visible at the latest epochs presented. The spectra have finally turned nebular, and our very last optical spectrum likely displays signatures from the deep and dense interior of the explosion. A high-resolution HST image highlights the complex environment of the explosion in this low-luminosity galaxy.Conclusions. We provide a large number of additional late-time observations of iPTF14hls, which are (and will continue to be) used to assess the many different interpretations for this intriguing object. In particular, the very late (+1000 d) steep decline of the optical light curve is difficult to reconcile with the proposed central engine models. The lack of very strong X-ray emission, and the emergence of intermediate-width emission lines including [S II] that we propose originate from dense, processed material in the core of the supernova ejecta, are also key observational tests for both existing and future models.
  •  
8.
  • Blagorodnova, N., et al. (författare)
  • COMMON ENVELOPE EJECTION FOR A LUMINOUS RED NOVA IN M101
  • 2017
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 834:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results of optical, near-infrared, and mid-infrared observations of M101 OT2015-1 (PSN J14021678+ 5426205), a luminous red transient in the Pinwheel galaxy (M101), spanning a total of 16 years. The light curve showed two distinct peaks with absolute magnitudes M-r <= -12.4 and M-r similar or equal to -12, on 2014 November 11 and 2015 February 17, respectively. The spectral energy distributions during the second maximum show a cool outburst temperature of approximate to 3700 K and low expansion velocities (approximate to -300 km s(-1)) for the H I, Ca II, Ba II, and K I lines. From archival data spanning 15-8 years before the outburst, we find a single source consistent with the optically discovered transient, which we attribute to being the progenitor; it has properties consistent with being an F-type yellow supergiant with L similar to 8.7 x 10(4) L-circle dot, T-eff approximate to 7000. K, and an estimated mass of M1= 18 +/- 1 M-circle dot. This star has likely just finished the H-burning phase in the core, started expanding, and is now crossing the Hertzsprung gap. Based on the combination of observed properties, we argue that the progenitor is a binary system, with the more evolved system overfilling the Roche lobe. Comparison with binary evolution models suggests that the outburst was an extremely rare phenomenon, likely associated with the ejection of the common envelope of a massive star. The initial mass of the primary fills the gap between the merger candidates V838 Mon (5-10 M-circle dot) and NGC. 4490-OT. (30M(circle dot)).
  •  
9.
  • Cai, Y-Z., et al. (författare)
  • AT 2017be-a new member of the class of intermediate-luminosity red transients
  • 2018
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 480:3, s. 3424-3445
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the results of our spectrophotometric monitoring campaign for AT 2017be in NGC 2537. Its light curve reveals a fast rise to an optical maximum, followed by a plateau lasting about 30 d, and finally a fast decline. Its absolute peak magnitude (M-r similar or equal to -12 mag) is fainter than that of core-collapse supernovae, and is consistent with those of supernova impostors and other intermediate-luminosity optical transients. The quasi-bolometric light-curve peaks at similar to 2 x 10(40) erg s(-1), and the late-time photometry allows us to constrain an ejected Ni-56 mass of similar to 8 x 10(-4)M(circle dot). The spectra of AT 2017 be show minor evolution over the observational period, a relatively blue continuum showing at early phases, which becomes redder with time. A prominent H alpha emission line always dominates over other Balmer lines. Weak Fe II features, Can H&K, and the Ca II NIR triplet are also visible, while P-Cygni absorption troughs are found in a high-resolution spectrum. In addition, the [Ca II] lambda lambda 7291, 7324 doublet is visible in all spectra. This feature is typical of intermediate-luminosity red transients (ILRTs), similar to SN 2008S. The relatively shallow archival Spitzer data are not particularly constraining. On the other hand, a non-detection in deeper near-infrared HST images disfavours a massive Luminous Blue Variable eruption as the origin for AT 2017be. As has been suggested for other ILRTs, we propose that AT 2017be is a candidate for a weak electron-capture supernova explosion of a superasymptotic giant branch star, still embedded in a thick dusty envelope.
  •  
10.
  • Dastidar, R., et al. (författare)
  • The optical properties of three Type II supernovae : 2014cx, 2014cy, and 2015cz
  • 2021
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 504:1, s. 1009-1028
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the photometric and spectroscopic analysis of three Type II supernovae (SNe): 2014cx, 2014cy, and 2015cz. SN 2014cx is a conventional Type IIP with shallow slope (0.2 mag/50 d) and an atypical short plateau (∼86 d). SNe 2014cy and 2015cz show relatively large decline rates (0.88 and 1.64 mag/50 d, respectively) at early times before settling to the plateau phase, unlike the canonical Type IIP/L SN light curves. All of them are normal luminosity SN II with an absolute magnitude at mid-plateau of M50V,14cx=−16.6±0.4mag⁠, M50V,14cy=−16.5±0.2mag⁠, and M50V,15cz=−17.4±0.3mag⁠. A relatively broad range of 56Ni masses is ejected in these explosions (0.027–0.070 M⊙). The spectra shows the classical evolution of  SNe  II, dominated by a blue continuum with broad H lines at early phases and narrower metal lines with P Cygni profiles during the plateau. High-velocity H  i features are identified in the plateau spectra of SN 2014cx at 11 600  kms −1, possibly a sign of ejecta-circumstellar interaction. The spectra of SN 2014cy exhibit strong absorption profile of H i similar to normal luminosity events whereas strong metal lines akin to sub-luminous SNe. The analytical modelling of the bolometric light curve of the three events yields similar progenitor radii within errors (478, 507, and 660 R ⊙ for SNe 2014cx, 2014cy, and 2015cz, respectively), a range of ejecta masses (15.0, 22.2, and 20.6 M ⊙ for SNe 2014cx, 2014cy, and 2015cz), and a modest range of explosion energies (3.3–7.2 foe where 1 foe=10 51erg).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 23

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy