SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tews Ingo) "

Sökning: WFRF:(Tews Ingo)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Huth, Sabrina, et al. (författare)
  • Constraining neutron-star matter with microscopic and macroscopic collisions
  • 2022
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 606:7913, s. 276-280
  • Tidskriftsartikel (refereegranskat)abstract
    • Interpreting high-energy, astrophysical phenomena, such as supernova explosions or neutron-star collisions, requires a robust understanding of matter at supranuclear densities. However, our knowledge about dense matter explored in the cores of neutron stars remains limited. Fortunately, dense matter is not probed only in astrophysical observations, but also in terrestrial heavy-ion collision experiments. Here we use Bayesian inference to combine data from astrophysical multi-messenger observations of neutron stars(1-9) and from heavy-ion collisions of gold nuclei at relativistic energies(10,11) with microscopic nuclear theory calculations(12-17) to improve our understanding of dense matter. We find that the inclusion of heavy-ion collision data indicates an increase in the pressure in dense matter relative to previous analyses, shifting neutron-star radii towards larger values, consistent with recent observations by the Neutron Star Interior Composition Explorer mission(5-8,18). Our findings show that constraints from heavy-ion collision experiments show a remarkable consistency with multi-messenger observations and provide complementary information on nuclear matter at intermediate densities. This work combines nuclear theory, nuclear experiment and astrophysical observations, and shows how joint analyses can shed light on the properties of neutron-rich supranuclear matter over the density range probed in neutron stars.
  •  
2.
  • Pang, Peter T. H., et al. (författare)
  • An updated nuclear-physics and multi-messenger astrophysics framework for binary neutron star mergers
  • 2023
  • Ingår i: Nature Communications. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The multi-messenger detection of the gravitational-wave signal GW170817, the corresponding kilonova AT2017gfo and the short gamma-ray burst GRB170817A, as well as the observed afterglow has delivered a scientific breakthrough. For an accurate interpretation of all these different messengers, one requires robust theoretical models that describe the emitted gravitational-wave, the electromagnetic emission, and dense matter reliably. In addition, one needs efficient and accurate computational tools to ensure a correct cross-correlation between the models and the observational data. For this purpose, we have developed the Nuclear-physics and Multi-Messenger Astrophysics framework NMMA. The code allows incorporation of nuclear-physics constraints at low densities as well as X-ray and radio observations of isolated neutron stars. In previous works, the NMMA code has allowed us to constrain the equation of state of supranuclear dense matter, to measure the Hubble constant, and to compare dense-matter physics probed in neutron-star mergers and in heavy-ion collisions, and to classify electromagnetic observations and perform model selection. Here, we show an extension of the NMMA code as a first attempt of analyzing the gravitational-wave signal, the kilonova, and the gamma-ray burst afterglow simultaneously. Incorporating all available information, we estimate the radius of a 1.4M⊙ neutron star to be R = 11.98+0.35−0.40 km.
  •  
3.
  • Pang, Peter T. H., et al. (författare)
  • Nuclear Physics Multimessenger Astrophysics Constraints on the Neutron Star Equation of State : Adding NICER's PSR J0740+6620 Measurement
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 922:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In the past few years, new observations of neutron stars (NSs) and NS mergers have provided a wealth of data that allow one to constrain the equation of state (EOS) of nuclear matter at densities above nuclear saturation density. However, most observations were based on NSs with masses of about 1.4 M⊙, probing densities up to ∼three to four times the nuclear saturation density. Even higher densities are probed inside massive NSs such as PSR J0740+6620. Very recently, new radio observations provided an update to the mass estimate for PSR J0740+6620, and X-ray observations by the NICER and XMM telescopes constrained its radius. Based on these new measurements, we revisit our previous nuclear physics multimessenger astrophysics constraints and derive updated constraints on the EOS describing the NS interior. By combining astrophysical observations of two radio pulsars, two NICER measurements, the two gravitational-wave detections GW170817 and GW190425, detailed modeling of the kilonova AT 2017gfo, and the gamma-ray burst GRB 170817A, we are able to estimate the radius of a typical 1.4 M⊙ NS to be 11.94 at 90% confidence. Our analysis allows us to revisit the upper bound on the maximum mass of NSs and disfavors the presence of a strong first-order phase transition from nuclear matter to exotic forms of matter, such as quark matter, inside NSs.
  •  
4.
  • Tews, Ingo, et al. (författare)
  • New ideas in constraining nuclear forces
  • 2020
  • Ingår i: Journal of Physics G: Nuclear and Particle Physics. - : IOP Publishing. - 0954-3899 .- 1361-6471. ; 47:10
  • Forskningsöversikt (refereegranskat)abstract
    • In recent years, nuclear physics has benefited greatly from the development of powerfulab initiomany-body methods and their combination with interactions from chiral effective field theory. With increasing computational power and continuous development of these methods, we are entering an era of precision nuclear physics. Indeed, uncertainties from nuclear Hamiltonians now dominate over uncertainties from many-body methods. This review summarizes the current status of, and future directions in, deriving and constraining nuclear Hamiltonians.
  •  
5.
  • Tews, Ingo, et al. (författare)
  • Nuclear Forces for Precision Nuclear Physics: A Collection of Perspectives
  • 2022
  • Ingår i: Few-Body Systems. - : Springer Science and Business Media LLC. - 1432-5411 .- 0177-7963. ; 63:4
  • Tidskriftsartikel (refereegranskat)abstract
    • This is a collection of perspective pieces contributed by the participants of the Institute for Nuclear Theory's Program on Nuclear Physics for Precision Nuclear Physics which was held virtually from April 19 to May 7, 2021. The collection represents the reflections of a vibrant and engaged community of researchers on the status of theoretical research in low-energy nuclear physics, the challenges ahead, and new ideas and strategies to make progress in nuclear structure and reaction physics, effective field theory, lattice QCD, quantum information, and quantum computing. The contributed pieces solely reflect the perspectives of the respective authors and do not represent the viewpoints of the Institute for Nuclear theory or the organizers of the program.
  •  
6.
  • Tews, Ingo, et al. (författare)
  • On the Nature of GW190814 and Its Impact on the Understanding of Supranuclear Matter
  • 2021
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 908:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The observation of a compact object with a mass of 2.50-2.67M99.9%. Even if we weaken previously employed constraints on the maximum mass of neutron stars, the probability of a binary black hole origin is still similar to 81%. Furthermore, we study the impact that this observation has on our understanding of the nuclear equation of state by analyzing the allowed region in the mass-radius diagram of neutron stars for both a binary black hole or neutron star-black hole scenario. We find that the unlikely scenario in which the secondary object was a neutron star requires rather stiff equations of state with a maximum speed of sound c(x) >= root 0.6 times the speed of light, while the binary black hole scenario does not offer any new insight.
  •  
7.
  • Ujevic, Maximiliano, et al. (författare)
  • Reverse phase transitions in binary neutron-star systems with exotic-matter cores
  • 2023
  • Ingår i: Physical Review D. - 2470-0010 .- 2470-0029. ; 107:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Multimessenger observations of binary neutron-star mergers provide a unique opportunity to constrain the dense-matter equation of state. Although it is known from quantum chromodynamics that hadronic matter will undergo a phase transition to exotic forms of matter—e.g., quark matter—the onset density of such a phase transition cannot be computed from first principles. Hence, it remains an open question if such phase transitions occur inside isolated neutron stars or during binary neutron-star mergers, or if they appear at even higher densities that are not realized in the cosmos. In this article, we perform numerical relativity simulations of neutron-star mergers and investigate scenarios in which the onset density of such a phase transition is exceeded in at least one inspiraling binary component. Our simulations reveal that shortly before the merger, it is possible that such stars undergo a “reverse phase transition”—i.e., densities decrease and the quark core inside the star disappears, leaving a purely hadronic star at merger. After the merger, when densities increase once more, the phase transition occurs again and leads, in the cases considered in this work, to the rapid formation of a black hole. We compute the gravitational-wave signal and the mass ejection for our simulations of such scenarios and find clear signatures that are related to the postmerger phase transition—e.g., smaller ejecta masses due to the softening of the equation of state through the quark core formation. Unfortunately, we do not find measurable imprints of the reverse phase transition.
  •  
8.
  • Watts, Anna L., et al. (författare)
  • Dense matter with eXTP
  • 2019
  • Ingår i: Science China Physics, Mechanics & Astronomy. - : Science Press. - 1674-7348 .- 1869-1927. ; 62:2
  • Forskningsöversikt (refereegranskat)abstract
    • In this White Paper we present the potential of the Enhanced X-ray Timing and Polarimetry (eXTP) mission for determining the nature of dense matter; neutron star cores host an extreme density regime which cannot be replicated in a terrestrial laboratory. The tightest statistical constraints on the dense matter equation of state will come from pulse profile modelling of accretion-powered pulsars, burst oscillation sources, and rotation-powered pulsars. Additional constraints will derive from spin measurements, burst spectra, and properties of the accretion flows in the vicinity of the neutron star. Under development by an international Consortium led by the Institute of High Energy Physics of the Chinese Academy of Sciences, the eXTP mission is expected to be launched in the mid 2020s.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy