SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tingvall Gustafsson Johanna) "

Sökning: WFRF:(Tingvall Gustafsson Johanna)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Astori, Audrey, et al. (författare)
  • ARID1a Associates with Lymphoid-Restricted Transcription Factors and Has an Essential Role in T Cell Development
  • 2020
  • Ingår i: Journal of Immunology. - : AMER ASSOC IMMUNOLOGISTS. - 0022-1767 .- 1550-6606. ; 205:5, s. 1419-1432
  • Tidskriftsartikel (refereegranskat)abstract
    • Maturation of lymphoid cells is controlled by the action of stage and lineage-restricted transcription factors working in concert with the general transcription and chromatin remodeling machinery to regulate gene expression. To better understand this functional interplay, we used Biotin Identification in human embryonic kidney cells to identify proximity interaction partners for GATA3, TCF7 (TCF1), SPI1, HLF, IKZF1, PAX5, ID1, and ID2. The proximity interaction partners shared among the lineagerestricted transcription factors included ARID1a, a BRG1-associated factor complex component. CUT&RUN analysis revealed that ARID1a shared binding with TCF7 and GATA3 at a substantial number of putative regulatory elements in mouse T cell progenitors. In support of an important function for ARID1a in lymphocyte development, deletion of Aridla in early lymphoid progenitors in mice resulted in a pronounced developmental arrest in early T cell development with a reduction of CD4(+)CD8(+) cells and a 20-fold reduction in thymic cellularity. Exploring gene expression patterns in DN3 cells from Wt and Aridla-deficient mice suggested that the developmental block resided in the DN3a to DN3b transition, indicating a deficiency in beta-selection. Our work highlights the critical importance of functional interactions between stage and lineage-restricted factors and the basic transcription machinery during lymphocyte differentiation.
  •  
2.
  •  
3.
  •  
4.
  • Somasundaram, Rajesh, et al. (författare)
  • EBF1 and PAX5 control pro-B cell expansion via opposing regulation of the Myc gene
  • 2021
  • Ingår i: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 137:22, s. 3037-3049
  • Tidskriftsartikel (refereegranskat)abstract
    • Genes encoding B lineage–restricted transcription factors are frequently mutated in B-lymphoid leukemias, suggesting a close link between normal and malignant B-cell development. One of these transcription factors is early B-cell factor 1 (EBF1), a protein of critical importance for lineage specification and survival of B-lymphoid progenitors. Here, we report that impaired EBF1 function in mouse B-cell progenitors results in reduced expression of Myc. Ectopic expression of MYC partially rescued B-cell expansion in the absence of EBF1 both in vivo and in vitro. Using chromosome conformation analysis in combination with ATAC-sequencing, chromatin immunoprecipitation–sequencing, and reporter gene assays, six EBF1-responsive enhancer elements were identified within the Myc locus. CRISPR-Cas9–mediated targeting of EBF1-binding sites identified one element of key importance for Myc expression and pro-B cell expansion. These data provide evidence that Myc is a direct target of EBF1. Furthermore, chromatin immunoprecipitation–sequencing analysis revealed that several regulatory elements in the Myc locus are targets of PAX5. However, ectopic expression of PAX5 in EBF1-deficient cells inhibits the cell cycle and reduces Myc expression, suggesting that EBF1 and PAX5 act in an opposing manner to regulate Myc levels. This hypothesis is further substantiated by the finding that Pax5 inactivation reduces requirements for EBF1 in pro–B-cell expansion. The binding of EBF1 and PAX5 to regulatory elements in the human MYC gene in a B-cell acute lymphoblastic leukemia cell line indicates that the EBF1:PAX5:MYC regulatory loop is conserved and may control both normal and malignant B-cell development.
  •  
5.
  • Strid, Tobias, 1982-, et al. (författare)
  • B Lymphocyte Specification Is Preceded by Extensive Epigenetic Priming in Multipotent Progenitors
  • 2021
  • Ingår i: Journal of Immunology. - : AMER ASSOC IMMUNOLOGISTS. - 0022-1767 .- 1550-6606. ; 206:11, s. 2700-2713
  • Tidskriftsartikel (refereegranskat)abstract
    • B lymphocyte development is dependent on the interplay between the chromatin landscape and lineage-specific transcription factors. It has been suggested that B lineage commitment is associated with major changes in the nuclear chromatin environment, proposing a critical role for lineage-specific transcription factors in the formation of the epigenetic landscape. In this report, we have used chromosome conformation capture in combination with assay for transposase-accessible chromatin sequencing analysis to enable highly efficient annotation of both proximal and distal transcriptional control elements to genes activated in B lineage specification in mice. A large majority of these genes were annotated to at least one regulatory element with an accessible chromatin configuration in multipotent progenitors. Furthermore, the majority of binding sites for the key regulators of B lineage specification, EBF1 and PAX5, occurred in already accessible regions. EBF1 did, however, cause a dynamic change in assay for transposase-accessible chromatin accessibility and was critical for an increase in distal promoter-enhancer interactions. Our data unravel an extensive epigenetic priming at regulatory elements annotated to lineage-restricted genes and provide insight into the interplay between the epigenetic landscape and transcription factors in cell specification.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy