SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Torrelles J. M.) "

Search: WFRF:(Torrelles J. M.)

  • Result 1-10 of 18
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Dent, W. R. F., et al. (author)
  • GASPS-A Herschel Survey of Gas and Dust in Protoplanetary Disks: Summary and Initial Statistics
  • 2013
  • In: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 125:927, s. 477-505
  • Journal article (peer-reviewed)abstract
    • We describe a large-scale far-infrared line and continuum survey of protoplanetary disk through to young debris disk systems carried out using the ACS instrument on the Herschel Space Observatory. This Open Time Key program, known as GASPS (Gas Survey of Protoplanetary Systems), targeted similar to 250 young stars in narrow wavelength regions covering the [OI] fine structure line at 63 mu m the brightest far-infrared line in such objects. A subset of the brightest targets were also surveyed in [OI]145 mu m, [CII] at 157 mu m, as well as several transitions of H2O and high-excitation CO lines at selected wavelengths between 78 and 180 mu m. Additionally, GASPS included continuum photometry at 70, 100 and 160 mu m, around the peak of the dust emission. The targets were SED Class II-III T Tauri stars and debris disks from seven nearby young associations, along with a comparable sample of isolated Herbig AeBe stars. The aim was to study the global gas and dust content in a wide sample of circumstellar disks, combining the results with models in a systematic way. In this overview paper we review the scientific aims, target selection and observing strategy of the program. We summarise some of the initial results, showing line identifications, listing the detections, and giving a first statistical study of line detectability. The [OI] line at 63 mu m was the brightest line seen in almost all objects, by a factor of similar to 10. Overall [OI]63 mu m detection rates were 49%, with 100% of HAeBe stars and 43% of T Tauri stars detected. A comparison with published disk dust masses (derived mainly from sub-mm continuum, assuming standard values of the mm mass opacity) shows a dust mass threshold for [OI] 63 mu m detection of similar to 10(-5) M-circle dot. Normalising to a distance of 140 pc, 84% of objects with dust masses >= 10(-5) M-circle dot can be detected in this line in the present survey; 32% of those of mass 10(-6)-10(-5) M-circle dot, and only a very small number of unusual objects with lower masses can be detected. This is consistent with models with a moderate UV excess and disk flaring. For a given disk mass, [OI] detectability is lower for M stars compared with earlier spectral types. Both the continuum and line emission was, in most systems, spatially and spectrally unresolved and centred on the star, suggesting that emission in most cases was from the disk. Approximately 10 objects showed resolved emission, most likely from outflows. In the GASPS sample, [OI] detection rates in T Tauri associations in the 0.3-4 Myr age range were similar to 50%. For each association in the 5-20 Myr age range, similar to 2 stars remain detectable in [OI]63 mu m, and no systems were detected in associations with age >20 Myr. Comparing with the total number of young stars in each association, and assuming a ISM-like gas/dust ratio, this indicates that similar to 18% of stars retain a gas-rich disk of total mass similar to 1 M-Jupiter for 1-4 Myr, 1-7% keep such disks for 5-10 Myr, but none are detected beyond 10-20 Myr. The brightest [OI] objects from GASPS were also observed in [OI]145 mu m, [CII]157 mu m and CO J = 18 - 17, with detection rates of 20-40%. Detection of the [CII] line was not correlated with disk mass, suggesting it arises more commonly from a compact remnant envelope.
  •  
2.
  • Gomez, J. F., et al. (author)
  • An SiO Toroid and Wide-angle Outflow Associated with the Massive Protostar W75N(B)-VLA2
  • 2023
  • In: Astrophysical Journal Letters. - 2041-8213 .- 2041-8205. ; 956:2
  • Journal article (peer-reviewed)abstract
    • We have carried out Atacama Large Millimeter/submillimeter Array observations of the massive star-forming region W75N(B), which contains the massive protostars VLA1, VLA2, and VLA3. Particularly, VLA2 is an enigmatic protostar associated with a wind-driven H2O maser shell, which has evolved from an almost isotropic outflow to a collimated one in just 20 yr. The shell expansion seemed to be halted by an obstacle located to the northeast of VLA2. Here we present our findings from observing the 1.3 mm continuum and H2CO and SiO emission lines. Within a region of ∼30″ (∼39,000 au) diameter, we have detected 40 compact millimeter continuum sources, three of them coinciding with VLA1, VLA2, and VLA3. While the H2CO emission is mainly distributed in a fragmented structure around the three massive protostars, but without any of the main H2CO clumps spatially coinciding with them, the SiO is highly concentrated on VLA2, indicating the presence of very strong shocks generated near this protostar. The SiO emission is clearly resolved into an elongated structure (∼0.″6 × 0.″3; ∼780 au×390 au) perpendicular to the major axis of the wind-driven maser shell. The structure and kinematics of the SiO emission are consistent with a toroid and a wide-angle outflow surrounding a central mass of ∼10 M ⊙, thus supporting previous theoretical predictions regarding the evolution of the outflow. Additionally, we have identified the expected location and estimated the gas density of the obstacle that is hindering the expansion of the maser shell.
  •  
3.
  • Carrasco-Gonzalez, C., et al. (author)
  • Observing the onset of outflow collimation in a massive protostar
  • 2015
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 348:6230, s. 114-117
  • Journal article (peer-reviewed)abstract
    • The current paradigm of star formation through accretion disks, and magnetohydrodynamically driven gas ejections, predicts the development of collimated outflows, rather than expansion without any preferential direction. We present radio continuum observations of the massive protostar W75N(B)-VLA 2, showing that it is a thermal, collimated ionized wind and that it has evolved in 18 years from a compact source into an elongated one. This is consistent with the evolution of the associated expanding water-vapor maser shell, which changed from a nearly circular morphology, tracing an almost isotropic outflow, to an elliptical one outlining collimated motions. We model this behavior in terms of an episodic, short-lived, originally isotropic ionized wind whose morphology evolves as it moves within a toroidal density stratification.
  •  
4.
  • Rodriguez-Kamenetzky, A., et al. (author)
  • Characterizing the radio continuum nature of sources in the massive star-forming region W75N (B)
  • 2020
  • In: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 496:3, s. 3128-3141
  • Journal article (peer-reviewed)abstract
    • The massive star-forming region W75N (B) is thought to host a cluster of massive protostars (VLA 1, VLA 2, and VLA 3) undergoing different evolutionary stages. In this work, we present radio continuum data with the highest sensitivity and angular resolution obtained to date in this region, using the VLA-A and covering a wide range of frequencies (4-48 GHz), which allowed us to study the morphology and the nature of the emission of the different radio continuum sources. We also performed complementary studies with multi-epoch Very Large Array (VLA) data and Atacama Large Millimeter Array (ALMA) archive data at 1.3 mm wavelength. We find that VLA 1 is driving a thermal radio jet at scales of approximate to 0.1 arcsec (approximate to 130 au), but also shows signs of an incipient hypercompact HII region at scales of less than or similar to 1 arcsec (less than or similar to 1300 au). VLA 3 is also driving a thermal radio jet at scales of a few tenths of arcsec (few hundred of au). We conclude that this jet is shock exciting the radio continuum sources Bc and VLA 4 (obscured Herbig-Haro objects), which show proper motions moving outward from VLA 3 at velocities of approximate to 112-118 km s(-1). We have also detected three new weak radio continuum sources, two of them associated with millimetre continuum cores observed with ALMA, suggesting that these two sources are also embedded young stellar objects in this massive star-forming region.
  •  
5.
  • Dall` Olio, Daria, 1981, et al. (author)
  • ALMA reveals the magnetic field evolution in the high-mass star forming complex G9.62+0.19
  • 2019
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 626
  • Journal article (peer-reviewed)abstract
    • Context. The role of magnetic fields during the formation of high-mass stars is not yet fully understood, and the processes related to the early fragmentation and collapse are as yet largely unexplored. The high-mass star forming region G9.62+0.19 is a well known source, presenting several cores at different evolutionary stages. Aims. We seek to investigate the magnetic field properties at the initial stages of massive star formation. We aim to determine the magnetic field morphology and strength in the high-mass star forming region G9.62+0.19 to investigate its relation to the evolutionary sequence of the cores. Methods. We made use of Atacama Large Millimeter Array (ALMA) observations in full polarisation mode at 1 mm wavelength (Band 7) and we analysed the polarised dust emission. We estimated the magnetic field strength via the Davis-Chandrasekhar-Fermi and structure function methods. Results. We resolve several protostellar cores embedded in a bright and dusty filamentary structure. The polarised emission is clearly detected in six regions: two in the northern field and four in the southern field. Moreover the magnetic field is orientated along the filament and appears perpendicular to the direction of the outflows. The polarisation vectors present ordered patterns and the cores showing polarised emission are less fragmented. We suggest an evolutionary sequence of the magnetic field, and the less evolved hot core exhibits a stronger magnetic field than the more evolved hot core. An average magnetic field strength of the order of 11 mG was derived, from which we obtain a low turbulent-to-magnetic energy ratio, indicating that turbulence does not significantly contribute to the stability of the clump. We report a detection of linear polarisation from thermal line emission, probably from methanol or carbon dioxide, and we tentatively compared linear polarisation vectors from our observations with previous linearly polarised OH masers observations. We also compute the spectral index, column density, and mass for some of the cores. Conclusions. The high magnetic field strength and smooth polarised emission indicate that the magnetic field could play an important role in the fragmentation and the collapse process in the star forming region G9.62+019 and that the evolution of the cores can be magnetically regulated. One core shows a very peculiar pattern in the polarisation vectors, which can indicate a compressed magnetic field. On average, the magnetic field derived by the linear polarised emission from dust, thermal lines, and masers is pointing in the same direction and has consistent strength.
  •  
6.
  • Surcis, G., et al. (author)
  • Monitoring of the polarized H 2 O maser emission around the massive protostars W75N(B)-VLA 1 and W75N(B)-VLA 2
  • 2023
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 673
  • Journal article (peer-reviewed)abstract
    • Context. Several radio sources have been detected in the high-mass star-forming region W75N(B), with the massive young stellar objects VLA 1 and VLA 2 shown to be of particular interest among them. These objects are thought to be at different evolutionary stages: VLA 1 is in the early stage of photoionization and driving a thermal radio jet, while VLA 2 is a thermal, collimated ionized wind surrounded by a dusty disk or envelope. In both sources, 22 GHz H2O masers have been detected in the past. Those around VLA 1 show a persistent linear distribution along the thermal radio jet, while those around VLA 2 have traced the evolution from a non-collimated to a collimated outflow over a period of ~20 yr. The magnetic field inferred from the H2O masers has shown an orientation rotation following the direction of the major-axis of the shell around VLA 2, whereas it is immutable around VLA 1. Aims. By monitoring the polarized emission of the 22 GHz H2O masers around both VLA 1 and VLA 2 over a period of six years, we aim to determine whether the H2O maser distributions show any variation over time and whether the magnetic field behaves accordingly. Methods. The European VLBI Network was used in full polarization and phase-reference mode in order to determine the absolute positions of the 22 GHz H2O masers with a beam size of ~1 mas and to determine the orientation and the strength of the magnetic field. We observed four epochs separated by two years from 2014 to 2020. Results. We detected polarized emission from the H2O masers around both VLA 1 and VLA 2 in all the epochs. By comparing the H2O masers detected in the four epochs, we find that the masers around VLA 1 are tracing a nondissociative shock originating from the expansion of the thermal radio jet, while the masers around VLA 2 are tracing an asymmetric expansion of the gas that is halted in the northeast where the gas likely encounters a very dense medium. We also found that the magnetic field inferred from the H2O masers in each epoch can be considered as a portion of a quasi-static magnetic field estimated in that location rather than in that time. This allowed us to study the morphology of the magnetic field around both VLA 1 and VLA 2 locally across a larger area by considering the vectors estimated in all the epochs as a whole. We find that the magnetic field in VLA 1 is located along the jet axis, bending toward the north and south at the northeasterly and southwesterly ends of the jet, respectively, reconnecting with the large-scale magnetic field. The magnetic field in VLA 2 is perpendicular to the expansion directions until it encounters the denser matter in the northeast, where the magnetic field is parallel to the expansion direction and agrees with the large-scale magnetic field. We also measured the magnetic field strength along the line of sight in three of the four epochs, with resulting values of -764mG
  •  
7.
  • Surcis, G., et al. (author)
  • Rapidly increasing collimation and magnetic field changes of a protostellar H2O maser outflow
  • 2014
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 565
  • Journal article (peer-reviewed)abstract
    • Context. W75N(B) is a massive star-forming region that contains three radio continuum sources (VLA 1, VLA 2, and VLA 3), which are thought to be three massive young stellar objects at three different evolutionary stages. VLA 1 is the most evolved and VLA 2 the least evolved source. The 22 GHz H2O masers associated with VLA 1 and VLA 2 have been mapped at several epochs over eight years. While the H2O masers in VLA 1 show a persistent linear distribution along a radio jet, those in VLA 2 are distributed around an expanding shell. Furthermore, H2O maser polarimetric measurements revealed magnetic fields aligned with the two structures. Aims. Using new polarimetric observations of H2O masers, we aim to confirm the elliptical expansion of the shell-like structure around VLA 2 and, at the same time, to determine if the magnetic fields around the two sources have changed. Methods. The NRAO Very Long Baseline Array was used to measure the linear polarization and the Zeeman-splitting of the 22 GHz H2O masers towards the massive star-forming region W75N(B). Results. The H2O maser distribution around VLA 1 is unchanged from that previously observed. We made an elliptical fit of the H2O masers around VLA 2. We find that the shell-like structure is still expanding along the direction parallel to the thermal radio jet of VLA 1. While the magnetic field around VLA 1 has not changed in the past similar to 7 years, the magnetic field around VLA 2 has changed its orientation according to the new direction of the major-axis of the shell-like structure and it is now aligned with the magnetic field in VLA 1.
  •  
8.
  • Alves, F. O., et al. (author)
  • The magnetic field of IRAS 16293-2422 as traced by shock-induced H2O masers
  • 2012
  • In: Proceedings of the International Astronomical Union. - 1743-9213 .- 1743-9221. ; 8:5287, s. 74-78
  • Conference paper (peer-reviewed)abstract
    • H2O masers are important magnetic field tracers in very high density gas. We show one of the first magnetic field determinations at such high density in a low-mass protostar: IRAS 16293-2422. We used the Very Large Array (VLA) to carry out spectro-polarimetric observations of the 22 GHz Zeeman emission of H2O masers. A blend of at least three maser features can be inferred from our data. They are excited in zones of compressed gas produced by shocks between the outflows ejected by this source and the ambient gas. The post-shock particle density is in the range 1 - 3 × 109 cmt−3, and the line-of-sight component of the magnetic field is estimated as ~ 113 mG. The outflow dynamics is likely magnetically dominated.
  •  
9.
  • Alves, F. O., et al. (author)
  • The magnetic field of IRAS 16293-2422 as traced by shock-induced H2O masers
  • 2012
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 542
  • Journal article (peer-reviewed)abstract
    • Context. Shock-induced H2O masers are important magnetic field tracers of very high density gas. Water masers are found in both high-and low-mass star-forming regions, and are a powerful tool for comparing magnetic field morphologies in both mass regimes. Aims. We present one of the first magnetic field determinations for the low-mass protostellar core IRAS 16293-2422 at volume densities as high as 10(8-10) cm(-3). Our goal is to determine wether the collapsing regime of this source is controlled by magnetic fields or other factors such as turbulence. Methods. We used the Very Large Array (VLA) to carry out spectropolarimetric observations of the 22 GHz Zeeman emission from H2O masers. From the Stokes V line profile, we are then able to estimate the magnetic field strength in the dense regions around the protostar. Results. A blend of at least three maser features can be inferred from our relatively high spatial resolution data set (similar to 0.1 ''), which is reproduced as a clear non-Gaussian line profile. The emission is very stable in terms of polarization fraction and position angle across the channels. The maser spots are aligned with some components of the complex outflow configuration of IRAS 16293-2422, and are excited in zones of compressed gas produced by shocks. The post-shock particle density is in the range of 1-3 x 10(9) cm(-3), consistent with typical water-maser pumping densities. Zeeman emission is produced by a very strong line-of-sight magnetic field (B similar to 113 mG). Conclusions. The magnetic field pressure derived from our data is comparable to the ram pressure of the outflow dynamics. This indicates that the magnetic field is energetically important to the dynamical evolution of IRAS 16293-2422.
  •  
10.
  • Tafoya, D., et al. (author)
  • Detection of HCO+ emission toward the planetary nebula K3-35
  • 2007
  • In: Astronomical Journal. - 1538-3881 .- 0004-6256. ; 133:2, s. 364-369
  • Journal article (peer-reviewed)abstract
    • We report the detection, for the first time, of HCO+(J = 1 -> 0) emission, as well as marginal CO(J = 1 -> 0) emission, toward the planetary nebula (PN) K3-35 as a result of a molecular survey carried out toward this source. We also report new observations of the previously detected CO( J 2 ! 1) and water maser emission, as well as upper limits for the emission of the SiO, (HCO+)-C-13, HNC, HCN, HC3OH, HC5N, CS, HC3N, (CO)-C-13, CN, and NH3 molecules. From the ratio of CO(J = 2 -> 1) to CO(J = 1 -> 0) emission we have estimated the kinetic temperature of the molecular gas, obtaining a value of similar or equal to 20 K. Using this result we have estimated a molecular mass for the envelope of similar or equal to 0.017M(circle dot) and an HCO+ abundance relative to H-2 of 6 x 10(-7), similar to the abundances found in other PNe. K3-35 is remarkable because it is one of the two PNe reported to exhibit water maser emission, which is present in the central region, as well as at a distance of similar or equal to 5000 AU from the center. The presence of molecular emission provides some clues that could help in understanding the persistence of water molecules in the envelope of K3-35. The HCO+ emission could be arising in dense molecular clumps, which may provide the shielding mechanism that protects water molecules in this source.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view