SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vallini L.) "

Sökning: WFRF:(Vallini L.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Spinoglio, L., et al. (författare)
  • 2017
  • Ingår i: Publications Astronomical Society of Australia. - : Cambridge University Press (CUP). - 1323-3580 .- 1448-6083. ; 34
  • Tidskriftsartikel (refereegranskat)abstract
    • IR spectroscopy in the range 12-230 mu m with the SPace IR telescope for Cosmology and Astrophysics (SPICA) will reveal the physical processes governing the formation and evolution of galaxies and black holes through cosmic time, bridging the gap between the James Webb Space Telescope and the upcoming Extremely Large Telescopes at shorter wavelengths and the Atacama Large Millimeter Array at longer wavelengths. The SPICA, with its 2.5-m telescope actively cooled to below 8 K, will obtain the first spectroscopic determination, in the mid-IR rest-frame, of both the star-formation rate and black hole accretion rate histories of galaxies, reaching lookback times of 12 Gyr, for large statistically significant samples. Densities, temperatures, radiation fields, and gas-phase metallicities will be measured in dust-obscured galaxies and active galactic nuclei, sampling a large range in mass and luminosity, from faint local dwarf galaxies to luminous quasars in the distant Universe. Active galactic nuclei and starburst feedback and feeding mechanisms in distant galaxies will be uncovered through detailed measurements of molecular and atomic line profiles. The SPICA's large-area deep spectrophotometric surveys will provide mid-IR spectra and continuum fluxes for unbiased samples of tens of thousands of galaxies, out to redshifts of z similar to 6.
  •  
2.
  • Béthermin, Matthieu, et al. (författare)
  • The ALMA-ALPINE [CII] survey: Kennicutt-Schmidt relation in four massive main-sequence galaxies at z ~ 4.5
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 680
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. The Kennicutt-Schmidt (KS) relation between the gas and the star formation rate (SFR) surface density (Σgas - ΣSFR) is essential to understand star formation processes in galaxies. To date, it has been measured up to z ~ 2.5 in main-sequence galaxies. In this Letter our aim is to put constraints at z ~ 4.5 using a sample of four massive main-sequence galaxies observed by ALMA at high resolution. Methods. We obtained ~0.3″-resolution [CII] and continuum maps of our objects, which we then converted into gas and obscured SFR surface density maps. In addition, we produced unobscured SFR surface density maps by convolving Hubble ancillary data in the rest-frame UV. We then derived the average ΣSFR in various Σgas bins, and estimated the uncertainties using a Monte Carlo sampling. Results. Our galaxy sample follows the KS relation measured in main-sequence galaxies at lower redshift, and is slightly lower than the predictions from simulations. Our data points probe the high end both in terms of Σgas and ΣSFR, and gas depletion timescales (285-843 Myr) remain similar to z ~ 2 objects. However, three of our objects are clearly morphologically disturbed, and we could have expected shorter gas depletion timescales (≲100 Myr) similar to merger-driven starbursts at lower redshifts. This suggests that the mechanisms triggering starbursts at high redshift may be different than in the low- and intermediate-z Universe.
  •  
3.
  • Béthermin, Matthieu, et al. (författare)
  • CONCERTO: High-fidelity simulation of millimeter line emissions of galaxies and [CII] intensity mapping
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 667
  • Tidskriftsartikel (refereegranskat)abstract
    • The intensity mapping of the [CII] 158-μm line redshifted to the submillimeter window is a promising probe of the za>4 star formation and its spatial distribution into large-scale structures. To prepare the first-generation experiments (e.g., CONCERTO), we need realistic simulations of the submillimeter extragalactic sky in spectroscopy. We present a new version of the simulated infrared dusty extragalactic sky (SIDES) model including the main submillimeter lines around 1 mm (CO, [CII], [CI]). This approach successfully reproduces the observed line luminosity functions. We then use our simulation to generate CONCERTO-like cubes (125-305 GHz) and forecast the power spectra of the fluctuations caused by the various astrophysical components at those frequencies. Depending on our assumptions on the relation between the star formation rate and [CII] luminosity, and the star formation history, our predictions of the za∼6 [CII] power spectrum vary by two orders of magnitude. This highlights how uncertain the predictions are and how important future measurements will be to improve our understanding of this early epoch. SIDES can reproduce the CO shot noise recently measured at a4;100 GHz by the millimeter-wavelength intensity mapping experiment (mmIME). Finally, we compare the contribution of the different astrophysical components at various redshifts to the power spectra. The continuum is by far the brightest, by a factor of three to 100, depending on the frequency. At 300 GHz, the CO foreground power spectrum is higher than the [CII] one for our base scenario. At lower frequencies, the contrast between [CII] and extragalactic foregrounds is even worse. Masking the known galaxies from deep surveys should allow us to reduce the foregrounds to 20% of the [CII] power spectrum up to z∼ 6.5. However, this masking method will not be sufficient at higher redshifts. The code and the products of our simulation are released publicly, and can be used for both intensity mapping experiments and submillimeter continuum and line surveys.
  •  
4.
  • Carniani, S., et al. (författare)
  • Extended ionised and clumpy gas in a normal galaxy at z=7.1 revealed by ALMA
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 605
  • Tidskriftsartikel (refereegranskat)abstract
    • We present new ALMA observations of the [O III] 88 mu m line and high angular resolution observations of the [C II] 158 mu m line in a normal star forming galaxy at z = 7.1. Previous [C II] observations of this galaxy had detected [C II] emission consistent with the Ly alpha redshift but spatially slightly off set relative to the optical (UV-rest frame) emission. The new [C II] observations reveal that the [C II] emission is partly clumpy and partly diffuse on scales larger than about 1 kpc. [O III] emission is also detected at high significance, off set relative to the optical counterpart in the same direction as the [C II] clumps, but mostly not overlapping with the bulk of the [C II] emission. The off set between different emission components (optical/UV and different far-IR tracers) is similar to that which is observed in much more powerful starbursts at high redshift. We show that the [O III] emitting clump cannot be explained in terms of diffuse gas excited by the UV radiation emitted by the optical galaxy, but it requires excitation by in-situ (slightly dust obscured) star formation, at a rate of about 7 M circle dot yr(-1). Within 20 kpc from the optical galaxy the ALMA data reveal two additional [O III] emitting systems, which must be star forming companions. We discuss that the complex properties revealed by ALMA in the z similar to 7.1 galaxy are consistent with expectations by recent models and cosmological simulations, in which differential dust extinction, differential excitation and different metal enrichment levels, associated with different subsystems assembling a galaxy, are responsible for the various appearance of the system when observed with distinct tracers.
  •  
5.
  • Gkogkou, A., et al. (författare)
  • CONCERTO: Simulating the CO, [CII], and [CI] line emission of galaxies in a 117 deg2 field and the impact of field-to-field variance
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 670
  • Tidskriftsartikel (refereegranskat)abstract
    • In the submillimeter regime, spectral line scans and line intensity mapping (LIM) are new promising probes for the cold gas content and star formation rate of galaxies across cosmic time. However, both of these two measurements suffer from field-to-field variance. We study the effect of field-to-field variance on the predicted CO and [CII] power spectra from future LIM experiments such as CONCERTO, as well as on the line luminosity functions (LFs) and the cosmic molecular gas mass density that are currently derived from spectral line scans. We combined a 117 deg2 dark matter lightcone from the Uchuu cosmological simulation with the simulated infrared dusty extragalactic sky (SIDES) approach. The clustering of the dusty galaxies in the SIDES-Uchuu product is validated by reproducing the cosmic infrared background anisotropies measured by Herschel and Planck. We find that in order to constrain the CO LF with an uncertainty below 20%, we need survey sizes of at least 0.1 deg2. Furthermore, accounting for the field-to-field variance using only the Poisson variance can underestimate the total variance by up to 80%. The lower the luminosity is and the larger the survey size is, the higher the level of underestimate. At z < 3, the impact of field-to-field variance on the cosmic molecular gas density can be as high as 40% for the 4.6 arcmin2 field, but drops below 10% for areas larger than 0.2 deg2. However, at z > 3 the variance decreases more slowly with survey size and for example drops below 10% for 1 deg2 fields. Finally, we find that the CO and [CII] LIM power spectra can vary by up to 50% in 1 deg2 fields. This limits the accuracy of the constraints provided by the first 1 deg2 surveys. In addition the level of the shot noise power is always dominated by the sources that are just below the detection thresholds, which limits its potential for deriving number densities of faint [CII] emitters. We provide an analytical formula to estimate the field-to-field variance of current or future LIM experiments given their observed frequency and survey size. The underlying code to derive the field-to-field variance and the full SIDES-Uchuu products (catalogs, cubes, and maps) are publicly available.
  •  
6.
  • Talia, M., et al. (författare)
  • ALMA view of a massive spheroid progenitor : a compact rotating core of molecular gas in an AGN host at z=2.226
  • 2018
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : OXFORD UNIV PRESS. - 0035-8711 .- 1365-2966. ; 476:3, s. 3956-3963
  • Tidskriftsartikel (refereegranskat)abstract
    • We present ALMA observations at 107.291 GHz (band 3) and 214.532 GHz (band 6) of GMASS 0953, a star-forming galaxy at z = 2.226 hosting an obscured active galactic nucleus (AGN) that has been proposed as a progenitor of compact quiescent galaxies (QGs). We measure for the first time the size of the dust and molecular gas emission of GMASS 0953 that we find to be extremely compact (similar to 1 kpc). This result, coupled with a very high interstellar medium (ISM) density (n similar to 10(5.5) cm(-3)), a low gas mass fraction (similar to 0.2), and a short gas depletion time-scale (similar to 150 Myr), implies that GMASS 0953 is experiencing an episode of intense star formation in its central region that will rapidly exhaust its gas reservoirs, likely aided by AGN-induced feedback, confirming its fate as a compact QG. Kinematic analysis of the CO(6-5) line shows evidence of rapidly rotating gas (V-rot = 320(-53)(+92) km s(-1)), as observed also in a handful of similar sources at the same redshift. On-going quenching mechanisms could either destroy the rotation or leave it intact leading the galaxy to evolve into a rotating QG.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy