SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Valluri Monica) "

Sökning: WFRF:(Valluri Monica)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Freese, Katherine, et al. (författare)
  • Dark stars : a review
  • 2016
  • Ingår i: Reports on progress in physics (Print). - : Institute of Physics Publishing (IOPP). - 0034-4885 .- 1361-6633. ; 79:6
  • Forskningsöversikt (refereegranskat)abstract
    • Dark stars are stellar objects made (almost entirely) of hydrogen and helium, but powered by the heat from dark matter annihilation, rather than by fusion. They are in hydrostatic and thermal equilibrium, but with an unusual power source. Weakly interacting massive particles (WIMPs), among the best candidates for dark matter, can be their own antimatter and can annihilate inside the star, thereby providing a heat source. Although dark matter constitutes only <= 0.1% of the stellar mass, this amount is sufficient to power the star for millions to billions of years. Thus, the first phase of stellar evolution in the history of the Universe may have been dark stars. We review how dark stars come into existence, how they grow as long as dark matter fuel persists, and their stellar structure and evolution. The studies were done in two different ways, first assuming polytropic interiors and more recently using the MESA stellar evolution code; the basic results are the same. Dark stars are giant, puffy (similar to 10 AU) and cool (surface temperatures similar to 10 000 K) objects. We follow the evolution of dark stars from their inception at similar to 1M(circle dot) as they accrete mass from their surroundings to become supermassive stars, some even reaching masses >10(6)M(circle dot) and luminosities >10(10)L(circle dot), making them detectable with the upcoming James Webb Space Telescope. Once the dark matter runs out and the dark star dies, it may collapse to a black hole; thus dark stars may provide seeds for the supermassive black holes observed throughout the Universe and at early times. Other sites for dark star formation may exist in the Universe today in regions of high dark matter density such as the centers of galaxies. The current review briefly discusses dark stars existing today, but focuses on the early generation of dark stars.
  •  
3.
  • Kelso, Chris, et al. (författare)
  • The impact of baryons on the direct detection of dark matter
  • 2016
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : IOP PUBLISHING LTD. - 1475-7516. ; :8
  • Tidskriftsartikel (refereegranskat)abstract
    • The spatial and velocity distributions of dark matter particles in the Milky Way Halo affect the signals expected to be observed in searches for dark matter. Results from direct detection experiments are often analyzed assuming a simple isothermal distribution of dark matter, the Standard Halo Model (SHM). Yet there has been skepticism regarding the validity of this simple model due to the complicated gravitational collapse and merger history of actual galaxies. In this paper we compare the SHM to the results of cosmological hydrodynamical simulations of galaxy formation to investigate whether or not the SHM is a good representation of the true WIMP distribution in the analysis of direct detection data. We examine two Milky Way-like galaxies from the MaGICC cosmological simulations (a) with dark matter only and (b) with baryonic physics included. The inclusion of baryons drives the shape of the DM halo to become more spherical and makes the velocity distribution of dark matter particles less anisotropic especially at large heliocentric velocities, thereby making the SHM a better fit. We also note that we do not find a significant disk-like rotating dark matter component in either of the two galaxy halos with baryons that we examine, suggesting that dark disks are not a generic prediction of cosmological hydrodynamical simulations. We conclude that in the Solar neighborhood, the SHM is in fact a good approximation to the true dark matter distribution in these cosmological simulations (with baryons) which are reasonable representations of the Milky Way, and hence can also be used for the purpose of dark matter direct detection calculations.
  •  
4.
  • Malbet, F., et al. (författare)
  • Faint objects in motion: the new frontier of high precision astrometry
  • 2021
  • Ingår i: Experimental Astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 51:3, s. 845-886
  • Tidskriftsartikel (refereegranskat)abstract
    • Sky survey telescopes and powerful targeted telescopes play complementary roles in astronomy. In order to investigate the nature and characteristics of the motions of very faint objects, a flexibly-pointed instrument capable of high astrometric accuracy is an ideal complement to current astrometric surveys and a unique tool for precision astrophysics. Such a space-based mission will push the frontier of precision astrometry from evidence of Earth-mass habitable worlds around the nearest stars, to distant Milky Way objects, and out to the Local Group of galaxies. As we enter the era of the James Webb Space Telescope and the new ground-based, adaptive-optics-enabled giant telescopes, by obtaining these high precision measurements on key objects that Gaia could not reach, a mission that focuses on high precision astrometry science can consolidate our theoretical understanding of the local Universe, enable extrapolation of physical processes to remote redshifts, and derive a much more consistent picture of cosmological evolution and the likely fate of our cosmos. Already several missions have been proposed to address the science case of faint objects in motion using high precision astrometry missions: NEAT proposed for the ESA M3 opportunity, micro-NEAT for the S1 opportunity, and Theia for the M4 and M5 opportunities. Additional new mission configurations adapted with technological innovations could be envisioned to pursue accurate measurements of these extremely small motions. The goal of this White Paper is to address the fundamental science questions that are at stake when we focus on the motions of faint sky objects and to briefly review instrumentation and mission profiles.
  •  
5.
  • Malhan, Khyati, et al. (författare)
  • Butterfly in a Cocoon, Understanding the Origin and Morphology of Globular Cluster Streams : The Case of GD-1
  • 2019
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 881:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Tidally disrupted globular cluster (GC) streams are usually observed, and therefore perceived, as narrow, linear, and one-dimensional structures in the 6D phase space. Here, we show that the GD-1 stellar stream, which is the tidal debris of a disrupted GC, possesses a secondary diffuse and extended stellar component (similar to 100 pc wide) around it, detected at the >5 sigma confidence level. Similar morphological properties are seen in synthetic streams that are produced from star clusters that are formed within dark matter sub-halos and then accrete onto a massive host galaxy. This lends credence to the idea that the progenitor of the highly retrograde GD-1 stream was originally formed outside of the Milky Way in a now defunct dark satellite galaxy. We deem that in future studies, this newly found cocoon component may serve as a structural hallmark to distinguish between the in situ and ex situ (accreted) formed GC streams.
  •  
6.
  • Malhan, Khyati, et al. (författare)
  • New Constraints on the Dark Matter Density Profiles of Dwarf Galaxies from Proper Motions of Globular Cluster Streams
  • 2022
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 941:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The central density profiles in dwarf galaxy halos depend strongly on the nature of dark matter (DM). Recently, in Malhan et al. we employed N-body simulations to show that the cuspy cold DM subhalos predicted by cosmological simulations can be differentiated from cored subhalos using the properties of accreted globular cluster (GC) streams since these GCs experience tidal stripping within their parent halos prior to accretion onto the Milky Way. We previously found that clusters that are accreted within cuspy subhalos produce streams with larger physical widths and higher dispersions in line-of-sight velocity and angular momentum than streams that are accreted within cored subhalos. Here, we use the same suite of simulations to demonstrate that the dispersion in the tangential velocities of streams () is also sensitive to the central DM density profiles of their parent dwarfs and GCs that they were accreted from; cuspy subhalos produce streams with larger  than those accreted inside cored subhalos. Using Gaia EDR3 observations of multiple GC streams we compare their  values with simulations. The measured  values are consistent with both an "in situ" origin and with accretion inside cored subhalos of M ∼ 108–9 M⊙ (or very low-mass cuspy subhalos of mass ∼108 M⊙). Despite the large current uncertainties in , we find a low probability that any of the progenitor GCs were accreted from cuspy subhalos of M ≳ 10 9M⊙. The uncertainties on Gaia tangential velocity measurements are expected to decrease in future and will allow for stronger constraints on subhalo DM density profiles.
  •  
7.
  • Malhan, Khyati, et al. (författare)
  • Probing the nature of dark matter with accreted globular cluster streams
  • 2021
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 501:1, s. 179-200
  • Tidskriftsartikel (refereegranskat)abstract
    • The steepness of the central density profiles of dark matter (DM) in low-mass galaxy haloes (e.g. dwarf galaxies) is a powerful probe of the nature of DM. We propose a novel scheme to probe the inner profiles of galaxy subhaloes using stellar streams. We show that the present-day morphological and dynamical properties of accreted globular cluster (GC) streams - those produced from tidal stripping of GCs that initially evolved within satellite galaxies and later merged with the Milky Way (MW) - are sensitive to the central DM density profile and mass of their parent satellites. GCs that accrete within cuspy cold dark matter (CDM) subhaloes produce streams that are physically wider and dynamically hotter than streams that accrete inside cored subhaloes. A first comparison of MW streams 'GD-1' and 'Jhelum' (likely of accreted GC origin) with our simulations indicates a preference for cored subhaloes. If these results hold up in future data, the implication is that either the DM cusps were erased by baryonic feedback, or their subhaloes naturally possessed cored density profiles implying particle physics models beyond CDM. Moreover, accreted GC streams are highly structured and exhibit complex morphological features (e.g. parallel structures and 'spurs'). This implies that the accretion scenario can naturally explain the recently observed peculiarities in some of the MW streams. We also propose a novel mechanism for forming 'gaps' in stellar streams when the remnant of the parent subhalo (which hosted the GC) later passes through the GC stream. This encounter can last a longer time (and have more of an impact) than the random encounters with DM subhaloes previously considered, because the GC stream and its parent subhalo are on similar orbits with small relative velocities. Current and future surveys of the MW halo will uncover numerous faint stellar streams and provide the data needed to substantiate our preliminary tests with this new probe of DM.
  •  
8.
  • Wu, Youjia, et al. (författare)
  • Uncertainties in direct dark matter detection in light of Gaia's escape velocity measurements
  • 2019
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : IOP PUBLISHING LTD. - 1475-7516. ; :10
  • Tidskriftsartikel (refereegranskat)abstract
    • Direct detection experiments have set increasingly stringent limits on the cross section for spin-independent dark matter-nucleon interactions. In obtaining such limits, experiments primarily assume the standard halo model (SHM) as the distribution of dark matter in our Milky Way. Three astrophysical parameters are required to define the SHM: the local dark matter escape velocity, the local dark matter density and the circular velocity of the sun around the center of the galaxy. This paper studies the effect of the uncertainties in these three astrophysical parameters on the XENON1T exclusion limits using the publicly available DDCalc code. We compare limits obtained using the widely assumed escape velocity from the RAVE survey and the newly calculated escape velocity by Monari et al. using Gaia data. Our study finds that the astrophysical uncertainties are dominated by the uncertainty in the escape velocity (independent of the best fit value) at dark matter masses below 6 GeV and can lead to a variation of nearly 6 orders of magnitude in the exclusion limits at 4 GeV. Above a WIMP mass of 6GeV, the uncertainty becomes dominated by the local dark matter density, leading to uncertainties of factors of similar to 10 (3) at 6 (15) GeV WIMP mass in the exclusion limits. Additionally, this work finds that the updated best fit value for the escape velocity based on Gaia data leads to only very minor changes to the effects of the astrophysical uncertainties on the XENON1T exclusion limits.
  •  
9.
  • Wu, Youjia, et al. (författare)
  • Using action space clustering to constrain the recent accretion history of Milky Way-like galaxies
  • 2021
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 509:4, s. 5882-5901
  • Tidskriftsartikel (refereegranskat)abstract
    • In the currently favoured cosmological paradigm galaxies form hierarchically through the accretion of satellites. Since a satellite is less massive than the host, its stars occupy a smaller volume in action space. Actions are conserved when the potential of the host halo changes adiabatically, so stars from an accreted satellite would remain clustered in action space as the host evolves. In this paper, we identify recently disrupted accreted satellites in three Milky Way-like disc galaxies from the cosmological baryonic FIRE-2 simulations by tracking satellites through simulation snapshots. We try to recover these satellites by applying the cluster analysis algorithm Enlink to the orbital actions of accreted star particles in the z = 0 snapshot. Even with completely error-free mock data we find that only 35 per cent (14/39) satellites are well recovered while the rest (25/39) are poorly recovered (i.e. either contaminated or split up). Most (10/14 similar to 70 per cent) of the well-recovered satellites have infall times <7.1 Gyr ago and total mass >4 x10(8) M-circle dot (stellar mass more than 1.2 x10(6) M-circle dot, although our upper mass limit is likely to be resolution dependent). Since cosmological simulations predict that stellar haloes include a population of in situ stars, we test our ability to recover satellites when the data include 10-50 per cent in situ contamination. We find that most previously well-recovered satellites stay well recovered even with 50 per cent contamination. With the wealth of 6D phase space data becoming available we expect that cluster analysis in action space will be useful in identifying the majority of recently accreted and moderately massive satellites in the Milky Way.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy